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1 Degré d’un polynôme

Définition 1

• Le degré de P est le plus grand indice n tel que an est non nul :

deg P =
déf.

max {n ∈ N | an ̸= 0}

• deg P = d signifie :

P =
d∑

k=0
akX k

et ad ̸= 0

.

P = (an)n∈N

Coef. dominant de P

Remarque

1. Par convention :

deg 0 = −∞

2. P s’écrit P =
n∑

k=0
akX k ssi :

deg P ≤ n.
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1 Degré d’un polynôme

Remarque

1. Par convention deg 0 = −∞ 2. P =
n∑

k=0
akX k ssi deg P ≤ n

Définition 2
Pour tout n ∈ N, on note Kn[X ] l’ensemble des polynômes de degré
inférieur ou égal à n : Kn[X ] =

déf.

{P ∈ K[X ] | deg P ≤ n}

Exemple 1
a) K0[X ] =

K.

b) K2[X ] =

{
aX 2 + bX + c ; a, b, c ∈ K

}
.

Théorème 1
Soient P, Q ∈ K[X ], non nuls.

•

deg(P + Q)

≤ max(deg P, deg Q)

•

deg PQ

= deg P + deg Q

Exercice 1
Démontrer les deux points du théorème.

il y a égalité si :
deg P ̸= deg Q

encore vrai si P = 0 ou Q = 0
avec les conventions :

−∞ ≤ n et − ∞ + n = −∞
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1 Degré d’un polynôme

Théorème 2 : K[X ] est un anneau intègre

Soient P, Q ∈ K[X ]. Si PQ = 0 alors :

P = 0 ou Q = 0.
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1 Degré d’un polynôme

Théorème 2 : K[X ] est un anneau intègre

Soient P, Q ∈ K[X ]. Si PQ = 0 alors : P = 0 ou Q = 0.

Exercice 2
Démontrer ce théorème.
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1 Degré d’un polynôme

Théorème 2 : K[X ] est un anneau intègre

Soient P, Q ∈ K[X ]. Si PQ = 0 alors : P = 0 ou Q = 0.

Exercice 3 : Inversibles de K[X ]

Déterminer les éléments inversibles de l’anneau K[X ].
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2 Composition

Définition 3

Soient P, Q ∈ K[X ] avec P =
n∑

k=0
akX k .

On note P ◦ Q ou P(Q) le polynôme :

n∑
k=0

akQk .

Exercice 4
On pose P = X 3 + X + 1 et Q = X 2 − 1. Calculer P ◦ Q et Q ◦ P.

Remarque
Si le polynôme Q n’est pas constant deg(P ◦ Q) =

deg P × deg Q

Exemple 2
Trouver tous les P ∈ K[X ] tels que P(X 3) = X 2P(X ).
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3 Diviseurs, multiples

Définition 4
Soient A, B ∈ K[X ]. On dit que B divise A ou que A est un multiple
de B si :

il existe Q ∈ K[X ] tel que A = BQ .

On note B | A

6



3 Diviseurs, multiples

Définition 4
Soient A, B ∈ K[X ]. On dit que B divise A ou que A est un multiple
de B si : il existe Q ∈ K[X ] tel que A = BQ .

On note B | A

6



3 Diviseurs, multiples

Définition 4
Soient A, B ∈ K[X ]. On dit que B divise A ou que A est un multiple
de B si : il existe Q ∈ K[X ] tel que A = BQ .

On note B | A

6



3 Diviseurs, multiples

Définition 4
Soient A, B ∈ K[X ]. On dit que B divise A ou que A est un multiple
de B si : il existe Q ∈ K[X ] tel que A = BQ .

Exemple 3 : Justifier que :
a) X 2 | X 6 + 4X 4 + 3X 2.
b) X − 5 | X 2 − 6X + 5.
c) X − 1 | Xn − 1.

On note B | A
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3 Diviseurs, multiples

Définition 4
Soient A, B ∈ K[X ]. On dit que B divise A ou que A est un multiple
de B si : il existe Q ∈ K[X ] tel que A = BQ .

Exercice 5 : Polynômes associés
Soient A, B ∈ K[X ]. Etablir :

A | B et B | A ⇐⇒ ∃λ ∈ K∗ | A = λB

On note B | A

6



4 Division euclidienne

Théorème 3
Soient A, B ∈ K[X ], avec B ̸= 0.
Il existe un unique couple (Q, R) de polynômes tels que :
1.

A = B Q + R

2.

deg R < deg B
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4 Division euclidienne

Théorème 3
Soient A, B ∈ K[X ], avec B ̸= 0.
Il existe un unique couple (Q, R) de polynômes tels que :

1. A = B Q + R 2. deg R < deg B

Exemple 4 : et méthode
Effectuer la division euclidienne de A = 2X 4 − 5X 3 − X 2 + 6X − 4
par B = X 2 − 2.

restequotient ou encore :
deg R ≤ (deg B) − 1
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4 Division euclidienne

Théorème 3
Soient A, B ∈ K[X ], avec B ̸= 0.
Il existe un unique couple (Q, R) de polynômes tels que :

1. A = B Q + R 2. deg R < deg B

Exercice 6
Etablir l’unicité puis l’existence de ce couple de polynômes.

restequotient ou encore :
deg R ≤ (deg B) − 1

7



II Racines d’un polynôme

I Divisibilité et division euclidienne

II Racines d’un polynôme

III Polynôme dérivé

IV Polynômes scindés et relations entre coefficients et racines

V Interpolation de Lagrange
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1 Evaluation d’un polynôme

Vocabulaire

Soit P =
n∑

k=0
akX k ∈ K[X ].

Pour tout α ∈ K, on note P(α) le nombre :

P(α) =
n∑

k=0
akαk

j Attention j

Pour obtenir P(3) : • on ne dit pas :

on pose X = 3

• on dit plutôt :

on évalue en 3

Remarque
On associe à P ∈ K[X ] la fonction polynomiale P̃ : x 7→ P(x)
de K dans K. Pour tous P, Q ∈ K[X ] :

• P̃ + Q = P̃ + Q̃ • P̃Q = P̃Q̃ • P̃(Q) = P̃ ◦ Q̃

Valeur de P en α
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1 Evaluation d’un polynôme

Définition 1
Soient P ∈ K[X ] et a ∈ K.
On dit que a est une racine de P dans K si :

P(a) = 0.
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1 Evaluation d’un polynôme

Définition 1
Soient P ∈ K[X ] et a ∈ K.
On dit que a est une racine de P dans K si : P(a) = 0.

Exemple 1 : Quelles sont les racines de P dans K ?
a) P = X + 3 dans K = R
b) P = X 2 + 1 dans K = C
c) P = X 2 + 1 dans K = R
d) P = 5 dans K = R
e) P = Xn − 1 dans K = C
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1 Evaluation d’un polynôme

Définition 1
Soient P ∈ K[X ] et a ∈ K.
On dit que a est une racine de P dans K si : P(a) = 0.

SF 2 : Calculer le reste de la D.E. de A par B

Exemple 2
Soit n ∈ N. Calculer le reste de la division euclidienne de Xn par :
a) X 2 − 3X + 2 b) X 2 − 4X + 4

10



2 Racines et divisibilité

Théorème 1
Soient P ∈ K[X ] et a ∈ K. P(a) = 0 ssi

(X − a) divise P

Exercice 1
Démontrer ce théorème
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2 Racines et divisibilité

Théorème 2 : Généralisation
Soient P ∈ K[X ] et a1, a2, . . . , ak ∈ K, deux à deux distincts

P(a1) = · · · = P(ak) = 0 ssi (X − a1) . . . (X − ak) divise P
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2 Racines et divisibilité

Théorème 2 : Généralisation
Soient P ∈ K[X ] et a1, a2, . . . , ak ∈ K, deux à deux distincts

P(a1) = · · · = P(ak) = 0 ssi (X − a1) . . . (X − ak) divise P

Exercice 2
Démontrer ce résultat par récurrence sur k.
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2 Racines et divisibilité

Théorème 2 : Généralisation
Soient P ∈ K[X ] et a1, a2, . . . , ak ∈ K, deux à deux distincts

P(a1) = · · · = P(ak) = 0 ssi (X − a1) . . . (X − ak) divise P

SF 3 : Obtenir une propriété de divisibilité à l’aide des racines

Exemple 3
Montrer que P = (X − 2)8 + (X − 1)7 − 1 est divisible par le
polynôme Q = X 2 − 3X + 2.
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2 Racines et divisibilité

Théorème 2 : Généralisation
Soient P ∈ K[X ] et a1, a2, . . . , ak ∈ K, deux à deux distincts

P(a1) = · · · = P(ak) = 0 ssi (X − a1) . . . (X − ak) divise P

SF 3 : Obtenir une propriété de divisibilité à l’aide des racines

Exemple 4
Montrer que 1 + X + X 2 divise X 311 + X 82 + X 15.

12



3 Racines et degré

Théorème 3
Soit P ∈ K[X ], non nul, et n ∈ N.
Si deg P = n :

P a au plus n racines dans K.

Exercice 3
Démontrer le théorème.

SF 8 : utiliser les racines pour montrer que P est nul

• Si on sait que deg P ≤ n et que P a n + 1 racines, alors P = 0.
• Si P a une infinité de racines, alors : P = 0

Conséquence
Si P(a) = Q(a) en une infinité de valeurs a ∈ K, alors P = Q .

au moins

i.e. P et Q ont
les mêmes coefficients

13



3 Racines et degré

Théorème 3
Soit P ∈ K[X ], non nul, et n ∈ N.
Si deg P = n : P a au plus n racines dans K.

Exercice 3
Démontrer le théorème.

SF 8 : utiliser les racines pour montrer que P est nul

• Si on sait que deg P ≤ n et que P a n + 1 racines, alors P = 0.
• Si P a une infinité de racines, alors : P = 0

Conséquence
Si P(a) = Q(a) en une infinité de valeurs a ∈ K, alors P = Q .

au moins

i.e. P et Q ont
les mêmes coefficients

13



3 Racines et degré

Théorème 3
Soit P ∈ K[X ], non nul, et n ∈ N.
Si deg P = n : P a au plus n racines dans K.

Exercice 3
Démontrer le théorème.

SF 8 : utiliser les racines pour montrer que P est nul

• Si on sait que deg P ≤ n et que P a n + 1 racines, alors P = 0.
• Si P a une infinité de racines, alors : P = 0

Conséquence
Si P(a) = Q(a) en une infinité de valeurs a ∈ K, alors P = Q .

au moins

i.e. P et Q ont
les mêmes coefficients

13



3 Racines et degré

Théorème 3
Soit P ∈ K[X ], non nul, et n ∈ N.
Si deg P = n : P a au plus n racines dans K.

Exercice 3
Démontrer le théorème.

SF 8 : utiliser les racines pour montrer que P est nul

• Si on sait que deg P ≤ n et que P a n + 1 racines, alors P = 0.
• Si P a une infinité de racines, alors : P = 0

Conséquence
Si P(a) = Q(a) en une infinité de valeurs a ∈ K, alors P = Q .

au moins

i.e. P et Q ont
les mêmes coefficients

13



3 Racines et degré

Théorème 3
Soit P ∈ K[X ], non nul, et n ∈ N.
Si deg P = n : P a au plus n racines dans K.

Exercice 3
Démontrer le théorème.

SF 8 : utiliser les racines pour montrer que P est nul

• Si on sait que deg P ≤ n et que P a n + 1 racines, alors P = 0.

• Si P a une infinité de racines, alors : P = 0

Conséquence
Si P(a) = Q(a) en une infinité de valeurs a ∈ K, alors P = Q .

au moins

i.e. P et Q ont
les mêmes coefficients

13



3 Racines et degré

Théorème 3
Soit P ∈ K[X ], non nul, et n ∈ N.
Si deg P = n : P a au plus n racines dans K.

Exercice 3
Démontrer le théorème.

SF 8 : utiliser les racines pour montrer que P est nul

• Si on sait que deg P ≤ n et que P a n + 1 racines, alors P = 0.
• Si P a une infinité de racines, alors : P = 0

Conséquence
Si P(a) = Q(a) en une infinité de valeurs a ∈ K, alors P = Q .

au moins

i.e. P et Q ont
les mêmes coefficients

13



3 Racines et degré

Théorème 3
Soit P ∈ K[X ], non nul, et n ∈ N.
Si deg P = n : P a au plus n racines dans K.

Exercice 3
Démontrer le théorème.

SF 8 : utiliser les racines pour montrer que P est nul

• Si on sait que deg P ≤ n et que P a n + 1 racines, alors P = 0.
• Si P a une infinité de racines, alors : P = 0

Conséquence
Si P(a) = Q(a) en une infinité de valeurs a ∈ K, alors P = Q .

au moins

i.e. P et Q ont
les mêmes coefficients

13



3 Racines et degré

Théorème 3
Soit P ∈ K[X ], non nul, et n ∈ N.
Si deg P = n : P a au plus n racines dans K.

Exercice 3
Démontrer le théorème.

SF 8 : utiliser les racines pour montrer que P est nul

• Si on sait que deg P ≤ n et que P a n + 1 racines, alors P = 0.
• Si P a une infinité de racines, alors : P = 0

Conséquence
Si P(a) = Q(a) en une infinité de valeurs a ∈ K, alors P = Q .

au moins

i.e. P et Q ont
les mêmes coefficients

13



3 Racines et degré

Théorème 3
Soit P ∈ K[X ], non nul, et n ∈ N.
Si deg P = n : P a au plus n racines dans K.

Exercice 3
Démontrer le théorème.

SF 8 : utiliser les racines pour montrer que P est nul

• Si on sait que deg P ≤ n et que P a n + 1 racines, alors P = 0.
• Si P a une infinité de racines, alors : P = 0

Conséquence
Si P(a) = Q(a) en une infinité de valeurs a ∈ K, alors P = Q .

au moins

i.e. P et Q ont
les mêmes coefficients

13



3 Racines et degré

SF 8 : utiliser les racines pour montrer que P est nul

• Si on sait que deg P ≤ n et que P a n + 1 racines, alors P = 0.
• Si P a une infinité de racines, alors : P = 0

Conséquence
Si P(a) = Q(a) en une infinité de valeurs a ∈ K, alors P = Q .

Exemple 5
On suppose que pour tout x ∈ R : P

(
ex) = e2x + ex + 1.

Calculer : P(−1) et P(j)

au moins

i.e. P et Q ont
les mêmes coefficients
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3 Racines et degré

SF 8 : utiliser les racines pour montrer que P est nul

• Si on sait que deg P ≤ n et que P a n + 1 racines, alors P = 0.
• Si P a une infinité de racines, alors : P = 0

Conséquence
Si P(a) = Q(a) en une infinité de valeurs a ∈ K, alors P = Q .

Exemple 6
Montrer qu’il n’existe pas de polynôme P ∈ R[X ] tel que :

∀x ∈ R, P(x) = sin x

au moins

i.e. P et Q ont
les mêmes coefficients

14



3 Racines et degré

SF 8 : utiliser les racines pour montrer que P est nul

• Si on sait que deg P ≤ n et que P a n + 1 racines, alors P = 0.
• Si P a une infinité de racines, alors : P = 0

Conséquence
Si P(a) = Q(a) en une infinité de valeurs a ∈ K, alors P = Q .

Exemple 7
Soit P ∈ K[X ] tel que P(X + 1) = P(X ).
Montrer que P est constant.

au moins

i.e. P et Q ont
les mêmes coefficients

14



3 Racines et degré

SF 8 : utiliser les racines pour montrer que P est nul

• Si on sait que deg P ≤ n et que P a n + 1 racines, alors P = 0.
• Si P a une infinité de racines, alors : P = 0

Conséquence
Si P(a) = Q(a) en une infinité de valeurs a ∈ K, alors P = Q .

Exemple 8
Trouver tous les polynômes P ∈ R[X ] vérifiant :
a) ∀n ∈ N, P(n) = n2 + 1
b) ∀n ∈ N, P(n) = n2 + (−1)n

au moins

i.e. P et Q ont
les mêmes coefficients

14



III Polynôme dérivé

I Divisibilité et division euclidienne

II Racines d’un polynôme

III Polynôme dérivé

IV Polynômes scindés et relations entre coefficients et racines

V Interpolation de Lagrange
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1 Généralités

Définition 1

Soit P =
n∑

k=0
akX k ∈ K[X ] avec n ≥ 1.

On définit le polynôme dérivé de P par :

P ′ =
n∑

k=1
kakX k−1

Remarque
• P ′ = 0 ssi

P ∈ K.

• Si deg P ≥ 1 : deg P ′ =

(deg P) − 1

=
n−1∑
k=0

(k + 1)ak+1X k
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akX k ∈ K[X ] avec n ≥ 1.

On définit le polynôme dérivé de P par : P ′ =
n∑

k=1
kakX k−1

Remarque
• P ′ = 0 ssi P ∈ K. • Si deg P ≥ 1 : deg P ′ = (deg P) − 1

Exercice 1
Soient P, Q ∈ K[X ]. Montrer que : (PQ)′ = P ′Q + PQ′.

=
n−1∑
k=0

(k + 1)ak+1X k
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1 Généralités

Définition 1

Soit P =
n∑

k=0
akX k ∈ K[X ] avec n ≥ 1.

On définit le polynôme dérivé de P par : P ′ =
n∑

k=1
kakX k−1

Remarque
• P ′ = 0 ssi P ∈ K. • Si deg P ≥ 1 : deg P ′ = (deg P) − 1

SF 2 : Calculer le reste de la division euclidienne de A par B

Exemple 1
Calculer le reste de la division euclidienne de Xn par X 2 − 4X + 4.

=
n−1∑
k=0

(k + 1)ak+1X k
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2 Polynômes dérivés d’ordres supérieurs

Notation
On définit par récurrence les polynômes dérivés successifs de P
• P(0) = P • ∀n ∈ N, P(n+1) =

(
P(n))′

Théorème 1 : Opérations
Soient P, Q ∈ K[X ], λ, µ ∈ K et soit n ∈ N.

• (λP + µQ)(n) =

λP(n) + µQ(n)

• Formule de Leibniz. (PQ)(n) =

n∑
k=0

(
n
k

)
P(k)Q(n−k)

Théorème 2 : Formule de Taylor polynomiale
Soient a ∈ K et n ∈ N.

Pour tout P ∈ Kn[X ] : P =

n∑
k=0

P(k)(a)
k!

(X − a)k

Exercice 2
Démontrer la formule par récurrence sur n.

combinaison linéaire de
1, (X − a), . . ., (X − a)n
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3 Multiplicité d’une racine

Définition 2
Soit P ∈ K[X ] non nul et a ∈ K. La multiplicité de a dans P est le
plus grand m ∈ N tel que (X − a)m | P.

Autrement dit, a est racine de multiplicité m de P si :

• (X − a)m | P

et (X − a)m+1 ̸ | P

• ou encore :

si P = (X − a)mQ où Q(a) ̸= 0.

Exemple 3
Comment trouver la multiplicité de 1 dans

P = X 5 − 4X 2 + 3X ?

racine double
(i.e. d’ordre 2)

racine simple
(i.e. d’ordre 1)

racine triple
(i.e. d’ordre 3)

18



3 Multiplicité d’une racine

Définition 2
Soit P ∈ K[X ] non nul et a ∈ K. La multiplicité de a dans P est le
plus grand m ∈ N tel que (X − a)m | P.
Autrement dit, a est racine de multiplicité m de P si :

• (X − a)m | P

et (X − a)m+1 ̸ | P

• ou encore :

si P = (X − a)mQ où Q(a) ̸= 0.

Exemple 3
Comment trouver la multiplicité de 1 dans

P = X 5 − 4X 2 + 3X ?

racine double
(i.e. d’ordre 2)

racine simple
(i.e. d’ordre 1)

racine triple
(i.e. d’ordre 3)

18



3 Multiplicité d’une racine

Définition 2
Soit P ∈ K[X ] non nul et a ∈ K. La multiplicité de a dans P est le
plus grand m ∈ N tel que (X − a)m | P.
Autrement dit, a est racine de multiplicité m de P si :
• (X − a)m | P

et (X − a)m+1 ̸ | P
• ou encore :

si P = (X − a)mQ où Q(a) ̸= 0.

Exemple 3
Comment trouver la multiplicité de 1 dans

P = X 5 − 4X 2 + 3X ?

racine double
(i.e. d’ordre 2)

racine simple
(i.e. d’ordre 1)

racine triple
(i.e. d’ordre 3)

18



3 Multiplicité d’une racine

Définition 2
Soit P ∈ K[X ] non nul et a ∈ K. La multiplicité de a dans P est le
plus grand m ∈ N tel que (X − a)m | P.
Autrement dit, a est racine de multiplicité m de P si :
• (X − a)m | P et (X − a)m+1 ̸ | P

• ou encore :

si P = (X − a)mQ où Q(a) ̸= 0.

Exemple 3
Comment trouver la multiplicité de 1 dans

P = X 5 − 4X 2 + 3X ?

racine double
(i.e. d’ordre 2)

racine simple
(i.e. d’ordre 1)

racine triple
(i.e. d’ordre 3)

18



3 Multiplicité d’une racine

Définition 2
Soit P ∈ K[X ] non nul et a ∈ K. La multiplicité de a dans P est le
plus grand m ∈ N tel que (X − a)m | P.
Autrement dit, a est racine de multiplicité m de P si :
• (X − a)m | P et (X − a)m+1 ̸ | P
• ou encore :

si P = (X − a)mQ où Q(a) ̸= 0.

Exemple 3
Comment trouver la multiplicité de 1 dans

P = X 5 − 4X 2 + 3X ?

racine double
(i.e. d’ordre 2)

racine simple
(i.e. d’ordre 1)

racine triple
(i.e. d’ordre 3)

18



3 Multiplicité d’une racine

Définition 2
Soit P ∈ K[X ] non nul et a ∈ K. La multiplicité de a dans P est le
plus grand m ∈ N tel que (X − a)m | P.
Autrement dit, a est racine de multiplicité m de P si :
• (X − a)m | P et (X − a)m+1 ̸ | P
• ou encore : si P = (X − a)mQ

où Q(a) ̸= 0.

Exemple 3
Comment trouver la multiplicité de 1 dans

P = X 5 − 4X 2 + 3X ?

racine double
(i.e. d’ordre 2)

racine simple
(i.e. d’ordre 1)

racine triple
(i.e. d’ordre 3)

18



3 Multiplicité d’une racine

Définition 2
Soit P ∈ K[X ] non nul et a ∈ K. La multiplicité de a dans P est le
plus grand m ∈ N tel que (X − a)m | P.
Autrement dit, a est racine de multiplicité m de P si :
• (X − a)m | P et (X − a)m+1 ̸ | P
• ou encore : si P = (X − a)mQ où Q(a) ̸= 0.

Exemple 3
Comment trouver la multiplicité de 1 dans

P = X 5 − 4X 2 + 3X ?

racine double
(i.e. d’ordre 2)

racine simple
(i.e. d’ordre 1)

racine triple
(i.e. d’ordre 3)

18



3 Multiplicité d’une racine

Définition 2
Soit P ∈ K[X ] non nul et a ∈ K. La multiplicité de a dans P est le
plus grand m ∈ N tel que (X − a)m | P.
Autrement dit, a est racine de multiplicité m de P si :
• (X − a)m | P et (X − a)m+1 ̸ | P
• ou encore : si P = (X − a)mQ où Q(a) ̸= 0.

Exercice 3
Justifier l’existence d’un plus grand m ∈ N tel que (X − a)m | P.

Exemple 3
Comment trouver la multiplicité de 1 dans

P = X 5 − 4X 2 + 3X ?

racine double
(i.e. d’ordre 2)

racine simple
(i.e. d’ordre 1)

racine triple
(i.e. d’ordre 3)

18



3 Multiplicité d’une racine

Définition 2
Soit P ∈ K[X ] non nul et a ∈ K. La multiplicité de a dans P est le
plus grand m ∈ N tel que (X − a)m | P.
Autrement dit, a est racine de multiplicité m de P si :
• (X − a)m | P et (X − a)m+1 ̸ | P
• ou encore : si P = (X − a)mQ où Q(a) ̸= 0.

Exemple 2 : et vocabulaire
P = (X − 1)2(X − 3)(X + 5)3 possède trois racines : 1 , 3 et −5

Exemple 3
Comment trouver la multiplicité de 1 dans

P = X 5 − 4X 2 + 3X ?

racine double
(i.e. d’ordre 2)

racine simple
(i.e. d’ordre 1)

racine triple
(i.e. d’ordre 3)

18



3 Multiplicité d’une racine

Définition 2
Soit P ∈ K[X ] non nul et a ∈ K. La multiplicité de a dans P est le
plus grand m ∈ N tel que (X − a)m | P.
Autrement dit, a est racine de multiplicité m de P si :
• (X − a)m | P et (X − a)m+1 ̸ | P
• ou encore : si P = (X − a)mQ où Q(a) ̸= 0.

Exemple 2 : et vocabulaire
P = (X − 1)2(X − 3)(X + 5)3 possède trois racines : 1 , 3 et −5

Exemple 3
Comment trouver la multiplicité de 1 dans

P = X 5 − 4X 2 + 3X ?

racine double
(i.e. d’ordre 2)

racine simple
(i.e. d’ordre 1)

racine triple
(i.e. d’ordre 3)

18



3 Multiplicité d’une racine

Définition 2
Soit P ∈ K[X ] non nul et a ∈ K. La multiplicité de a dans P est le
plus grand m ∈ N tel que (X − a)m | P.
Autrement dit, a est racine de multiplicité m de P si :
• (X − a)m | P et (X − a)m+1 ̸ | P
• ou encore : si P = (X − a)mQ où Q(a) ̸= 0.

Exemple 2 : et vocabulaire
P = (X − 1)2(X − 3)(X + 5)3 possède trois racines : 1 , 3 et −5

Exemple 3
Comment trouver la multiplicité de 1 dans

P = X 5 − 4X 2 + 3X ?

racine double
(i.e. d’ordre 2)

racine simple
(i.e. d’ordre 1)

racine triple
(i.e. d’ordre 3)

18



3 Multiplicité d’une racine

Définition 2
Soit P ∈ K[X ] non nul et a ∈ K. La multiplicité de a dans P est le
plus grand m ∈ N tel que (X − a)m | P.
Autrement dit, a est racine de multiplicité m de P si :
• (X − a)m | P et (X − a)m+1 ̸ | P
• ou encore : si P = (X − a)mQ où Q(a) ̸= 0.

Exemple 2 : et vocabulaire
P = (X − 1)2(X − 3)(X + 5)3 possède trois racines : 1 , 3 et −5

Exemple 3
Comment trouver la multiplicité de 1 dans

P = X 5 − 4X 2 + 3X ?

racine double
(i.e. d’ordre 2)

racine simple
(i.e. d’ordre 1)

racine triple
(i.e. d’ordre 3)

18



3 Multiplicité d’une racine

Définition 2
Soit P ∈ K[X ] non nul et a ∈ K. La multiplicité de a dans P est le
plus grand m ∈ N tel que (X − a)m | P.
Autrement dit, a est racine de multiplicité m de P si :
• (X − a)m | P et (X − a)m+1 ̸ | P
• ou encore : si P = (X − a)mQ où Q(a) ̸= 0.

Exemple 2 : et vocabulaire
P = (X − 1)2(X − 3)(X + 5)3 possède trois racines : 1 , 3 et −5

Exemple 3
Comment trouver la multiplicité de 1 dans

P = X 5 − 4X 2 + 3X ?

racine double
(i.e. d’ordre 2)

racine simple
(i.e. d’ordre 1)

racine triple
(i.e. d’ordre 3)

18



3 Multiplicité d’une racine

Théorème 3 : Généralisation des résultats du II

• Si a1, ..., ak sont racines distinctes de P de multiplicités au moins

m1, ..., mk :

k∏
i=1

(X − ai)mi divise P.

• Si deg P = n :

P a au plus n racines comptées avec multiplicité.

19
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4 Polynômes dérivés et racines multiples

Exercice 4
Soit a ∈ K et soit k ∈ N. On pose : A = (X − a)m.
Calculer A(k). Que vaut A(k)(a) ?

Théorème 4
Soient P ∈ K[X ], a ∈ K et m ∈ N∗. Il y a équivalence entre :
i) a est racine de P de multiplicité m

ii) P(a) = P ′(a) = · · · = P(m−1)(a) = 0 et P(m)(a) ̸= 0.

20
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i) a est racine de P de multiplicité m
ii) P(a) = P ′(a) = · · · = P(m−1)(a) = 0 et P(m)(a) ̸= 0.

Exemple 3
Trouver la multiplicité de 1 dans P = X 5 − 4X 2 + 3X .

20



4 Polynômes dérivés et racines multiples

Exercice 4
Soit a ∈ K et soit k ∈ N. On pose : A = (X − a)m.
Calculer A(k). Que vaut A(k)(a) ?
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Soient P ∈ K[X ], a ∈ K et m ∈ N∗. Il y a équivalence entre :
i) a est racine de P de multiplicité m
ii) P(a) = P ′(a) = · · · = P(m−1)(a) = 0 et P(m)(a) ̸= 0.

Exercice 5 : Ex. 85.1, banque INP
Démontrer l’équivalence du théorème ci-dessus.
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4 Polynômes dérivés et racines multiples

Théorème 4
Soient P ∈ K[X ], a ∈ K et m ∈ N∗. Il y a équivalence entre :
i) a est racine de P de multiplicité m
ii) P(a) = P ′(a) = · · · = P(m−1)(a) = 0 et P(m)(a) ̸= 0.

Conséquences
• a est racine simple de P ssi P(a) = 0 et P ′(a) ̸= 0
• Si a est de multiplicité m ≥ 1 dans P alors a est de multiplicité

m − 1 dans P ′

Exemple 4
Soit n ≥ 1. Montrer que Xn − 1 n’a que des racines simples dans C
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Théorème 5
Soient P ∈ K[X ], a ∈ K et m ∈ N∗.
(X − a)m divise P ssi :

P(a) = · · · = P(m−1)(a) = 0.

Exercice 5 : Ex. 85.2, banque INP
Trouver a, b ∈ R tels que P = X 5 + aX 2 + bX soit divisible par
(X − 1)2.
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Théorème 4
Soient P ∈ K[X ], a ∈ K et m ∈ N∗. Il y a équivalence entre :
i) a est racine de P de multiplicité m
ii) P(a) = P ′(a) = · · · = P(m−1)(a) = 0 et P(m)(a) ̸= 0.

Théorème 6
Soient P ∈ K[X ], a ∈ K et m ∈ N∗.
(X − a)m divise P ssi : P(a) = · · · = P(m−1)(a) = 0.

Exemple 5
Montrer que (X 2 + 1)2 divise X 5 + X 4 + 2X 3 + 2X 2 + X + 1.
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IV Polynômes scindés et relations
entre coefficients et racines

I Divisibilité et division euclidienne

II Racines d’un polynôme

III Polynôme dérivé

IV Polynômes scindés et relations entre coefficients et racines

V Interpolation de Lagrange
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1 Polynômes scindés

Définition 1
Soit P ∈ K[X ], non constant, de degré n ∈ N∗. On dit que P est
scindé sur K si :
• P se factorise dans K[X ] en un produit de polynômes de degré 1

i.e. : P =

λ
n∏

i=1
(X − zi )

• C’est équivalent à :

P a n racines dans K comptées avec
multiplicité

coefficient dominant

racines
(éventuellement confondues)

22



1 Polynômes scindés

Définition 1
Soit P ∈ K[X ], non constant, de degré n ∈ N∗. On dit que P est
scindé sur K si :
• P se factorise dans K[X ] en un produit de polynômes de degré 1

i.e. : P = λ
n∏

i=1
(X − zi )

• C’est équivalent à :

P a n racines dans K comptées avec
multiplicité

coefficient dominant

racines
(éventuellement confondues)

22



1 Polynômes scindés

Définition 1
Soit P ∈ K[X ], non constant, de degré n ∈ N∗. On dit que P est
scindé sur K si :
• P se factorise dans K[X ] en un produit de polynômes de degré 1

i.e. : P = λ
n∏

i=1
(X − zi )

• C’est équivalent à :

P a n racines dans K comptées avec
multiplicité

coefficient dominant

racines
(éventuellement confondues)

22



1 Polynômes scindés

Définition 1
Soit P ∈ K[X ], non constant, de degré n ∈ N∗. On dit que P est
scindé sur K si :
• P se factorise dans K[X ] en un produit de polynômes de degré 1

i.e. : P = λ
n∏

i=1
(X − zi )

• C’est équivalent à :

P a n racines dans K comptées avec
multiplicité

coefficient dominant

racines
(éventuellement confondues)

22



1 Polynômes scindés

Définition 1
Soit P ∈ K[X ], non constant, de degré n ∈ N∗. On dit que P est
scindé sur K si :
• P se factorise dans K[X ] en un produit de polynômes de degré 1

i.e. : P = λ
n∏

i=1
(X − zi )

• C’est équivalent à : P a n racines dans K comptées avec
multiplicité

coefficient dominant

racines
(éventuellement confondues)

22



1 Polynômes scindés

Définition 1
Soit P ∈ K[X ], non constant, de degré n ∈ N∗. On dit que P est
scindé sur K si :
• P se factorise dans K[X ] en un produit de polynômes de degré 1

i.e. : P = λ
n∏

i=1
(X − zi )

• C’est équivalent à : P a n racines dans K comptées avec
multiplicité

Exemple 1
Les polynômes suivants sont-ils scindés sur R ?
a) P = X 4 − 2X 2 + 1. b) Q = X 3 − 1

coefficient dominant

racines
(éventuellement confondues)
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1 Polynômes scindés

Théorème 1 : d’Alembert-Gauss (Admis)

Tout polynôme non constant de C[X ] possède :

au moins une racine
complexe.

En conséquence :

tout polynôme constant de C[X ] est scindé sur C

Exercice 1
Démontrer la conséquence par récurrence sur le degré à l’aide du
théorème de d’Alembert-Gauss
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2 Relations entre coefficients et racines

Cadre

P =
n∑

k=0
akX k = an(X − z1) . . . (X − zn) est scindé sur K de degré n

Lien entre
(a0, . . . , an) et (z1, . . . , zn) ?
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Rappel : le cas n = 2

Si P = aX 2 + bX + c = a(X − z1)(X − z2)
alors : • z1 + z2 =

−b
a

• z1z2 =

c
a

Résoudre un système non linéaire

Les solutions de
{

z1 + z2 = s
z1z2 = p

sont

les racines de X 2 − sX + p
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Cas particulier important : le cas n = 3

Si P = aX 2 + bX + c = a(X − z1)(X − z2)
alors : • z1 + z2 = −b

a • z1z2 =c
a

Résoudre un système non linéaire

Les solutions de
{

z1 + z2 = s
z1z2 = p

sont les racines de X 2 − sX + p

Théorème 2 : Le cas n = 3
Soit P = aX 3 + bX 2 + cX + d = a(X − z1)(X − z2)(X − z3) :

•

z1 + z2 + z3 = −b
a

•

z1z2 + z1z3 + z2z3 = c
a

•

z1z2z3 = −d
a
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Exercice 2
Etablir ces relations en développant l’expression factorisée de P.
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Cas particulier important : le cas n = 3

Théorème 2 : Le cas n = 3
Soit P = aX 3 + bX 2 + cX + d = a(X − z1)(X − z2)(X − z3) :

• z1 + z2 + z3 = −b
a • z1z2 + z1z3 + z2z3 = c

a • z1z2z3 = −d
a

SF 5 : Résoudre un système non linéaire
Les solutions de 

z1 + z2 + z3 = α

z1z2 + z1z3 + z2z3 = β

z1z2z3 = γ

sont :

les racines de X 3 − αX 2 + βX − γ.

Exemple 3

Résoudre (S) :


x + y + z = 0
xy + yz + xz = −2
xyz = −1

d’inconnue (x , y , z) ∈ C3

26
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Le cas général

A partir de : (X − z1)(X − z2) . . . (X − zn)=
n∑

k=0

ak
an

X k

Théorème 2

• z1 + z2 + · · · + zn =

−an−1
an

• z1z2 + z1z3 + · · · + zn−1zn =

an−2
an

• z1z2 . . . zn =

(−1)n a0
an

Remarque
Plus généralement pour tout k ∈ J1 , nK :

∑

1≤i1<···<ik≤n

zi1zi2 . . . zik

= (−1)k an−k
ak

coef. de Xn−1

coef. de Xn−2

coef. constant
coef. de Xn−k

noté σk :
ke fonction
symétrique

de z1, . . . , zn Formules de Viète
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Le cas général

Théorème 3
• z1 + z2 + · · · + zn = −an−1

an
• z1z2 . . . zn = (−1)n a0

an

Remarque
Plus généralement pour tout k ∈ J1 , nK :

∑
1≤i1<···<ik≤n

zi1zi2 . . . zik = (−1)n−k an−k
an

Exemple 4
Soit n ≥ 2. En considérant P = Xn − 1, calculer la somme et le
produit des racines n-ièmes de l’unité.

coef. de Xn−k
noté σk :

ke fonction
symétrique

de z1, . . . , zn Formules de Viète
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V Interpolation de Lagrange

I Divisibilité et division euclidienne

II Racines d’un polynôme

III Polynôme dérivé

IV Polynômes scindés et relations entre coefficients et racines

V Interpolation de Lagrange
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Problème de l’interpolation

Données

• x1, . . . , xn ∈ K deux à deux distincts.
• y1, . . . , yn ∈ K quelconques

Problème de l’interpolation
Trouver un polynôme dont la courbe passe par les points (xk , yk) i.e.
trouver P ∈ K[X ] tel que : P(x1) = y1 , . . . , P(xn) = yn.

Figure

30

https://www.desmos.com/calculator/yokpnzidv1
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trouver P ∈ K[X ] tel que : P(x1) = y1 , . . . , P(xn) = yn.

Figure
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Polynômes de Lagrange associés à x1, x2, . . . , xn

Définition 1

Pour i ∈ J1 , nK, on définit le polynôme Li par :

Li =
∏

1≤j≤n
j ̸=i

X − xj
xi − xj

Ce polynôme vérifie :
•

Li(xi) = 1

•

Li(xk) = 0 pour tout k ̸= i

Exemple 1
Calculer L1 et L3 dans le cas où x1 = 1, x2 = 2, x3 = 3 et x4 = 4.

deg Li = n − 1
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Polynômes interpolateurs de Lagrange

Théorème 1
Il existe un unique P ∈ Kn−1[X ] tel que :

∀k ∈ J1 , nK, P(xk) = yk

Ce polynôme est donné par :

P =
n∑

i=1

yi

Li .
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Exercice 1 : Ex. 87.1, banque INP
Démontrer le théorème
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i Li pour tout p ∈ J0 , n − 1K
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