Polynémes
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Pour tout n € N, on note K,[X] I'ensemble des polynémes de degré
inférieur ou égal a n:  K,[X] = {P eK[X] | degP < n}
e

encore vraisi P=0o0u Q@ =0

avec les conventions :
a) Ko[X] =K. b—oogn et —oco+n=- GK}'

Exemple 1

Théoreme 1 :
Soient P, @ € K[X], non nuls.
» deg(P 4+ Q) < max(deg P, deg Q) « deg PQ = deg P + deg Q

il y aégalité si:
deg P # deg Q
Démontrer |lesTaenx

Exercice 1
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1 Degré d’un polynome

Théoréeme 2 : K[X] est un anneau intégre

Soient P, Q@ € K[X]. SiPQ=0alors: P=00ouQ=0.

Exercice 3 : Inversibles de K[X]

Déterminer les éléments inversibles de I'anneau K[X].
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2 Composition

Définition 3

Soient P, Q € K[X] avec P = Zaka.
k=0

On note Po Q ou P(Q) le polynéme : Zaka.
k=0

Exercice 4
Onpose P=X34+X+1etQ=X?>—1. Calculer PoQ et QoP.

Remarque

Si le polyndme @ n’est pas constant [deg(P o Q) =deg P X deg Q]

Exemple 2
Trouver tous les P € K[X] tels que P(X3) = X2P(X).
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3 Diviseurs, multiples

Soient A, B € K[X]. On dit que B divise A ou que A est un multiple
de Bsi : il existe Q € K[X] tel que A= BQ .

On note B| A

Exemple 3 : Justifier que :
a) X2 | X®+4X*+43X2.

b) X —5| X% —6X +5.

c) X—-1|X"-1.



3 Diviseurs, multiples

Définition 4
Soient A, B € K[X]. On dit que B divise A ou que A est un multiple
de Bsi : il existe Q € K[X] tel que A= BQ .

On note B | A

AlB e B|A <« 3eK'|A=2AB

Exercice 5 : Polynomes associés

Soient A, B € K[X]. Etablir :
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4 Division euclidienne

Théoreme 3
Soient A, B € K[X], avec B # 0.
[l existe un unique couple (@, R) de polyndmes tels que :

1. A=BQ + R 2. deg R <_degB
AN

[ ou encore : ]
deg R < (degB) — 1
Exemple 4 : et méthode ( )

Effectuer la division euclidienne de A =2X* —5X3 — X2 +6X — 4
par B = X2 —2.



4 Division euclidienne

Soient A, B € K[X], avec B # 0.

[l existe un unique couple (@, R) de polyndmes tels que :

1. A=BQ + R 2. deg R <_degB
AN

ou encore :

deg R < (degB) — 1

Etablir I'unicité puis I'existence de ce couple de polynémes.
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1 Evaluation d’un polynéme

Vocabulaire

n
Soit P = Zakxk c K[X]. (Valeur de P en a)
k=0

Pour tout « € K, on note P(«) le nombre : P(«) Zaka

“* Attention 4*

Pour obtenir P(3) : = on ne dit pas : on pose X =3
= on dit plutét : on évalue en 3

Remarque

|

On associe a P € K[X] la fonction polynomiale P : x — P(x)
de K dans K. Pour tous P, Q € K[X] :

“PfQ=P+Q =PQ=PQ =P(@Q=PoQ
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1 Evaluation d’un polynéme

Soient P € K[X] et a € K.
On dit que a est une racine de P dans K si : P(a) = 0.

Exemple 1 : Quelles sont les racines de P dans K ?
a) P=X+3 dans K=R

b) P=X?+1 dans K=C

c) P=X?+1 dans K=R

d) P=5 dans K=R

e) P=X"—-1 dans K=C



1 Evaluation d’un polynéme

Définition 1
Soient P € K[X] et a € K.
On dit que a est une racine de P dans K si : P(a) = 0.

SF 2 : Calculer le reste de la D.E. de A par B

Exemple 2

Soit n € N. Calculer le reste de la division euclidienne de X" par :
a) X2 -3X+2 b) X2 —4X +4
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2 Racines et divisibilité

Soient P € K[X] et a€ K. P(a) =0 ssi (X — a) divise P




2 Racines et divisibilité

Soient P € K[X] et a€ K. P(a) =0 ssi (X — a) divise P

Exercice 1

Démontrer ce théoreme
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2 Racines et divisibilité

Théoréeme 2 : Généralisation

Soient P € K[X] et a1, a2,...,ak € K, deux a deux distincts

P(ai)=---=P(ax) =0 ssi (X —a1)...(X — ax) divise P

Exercice 2

Démontrer ce résultat par récurrence sur k.
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2 Racines et divisibilité

Théoréeme 2 : Généralisation

Soient P € K[X] et a1, a2,...,ak € K, deux a deux distincts

P(ai)=---=P(ax) =0 ssi (X —a1)...(X — ax) divise P

SF 3 : Obtenir une propriété de divisibilité a I’aide des racines
Exemple 3

Montrer que P = (X — 2)® 4+ (X — 1)7 — 1 est divisible par le
polyndme @ = X? — 3X + 2.
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2 Racines et divisibilité

Théoréeme 2 : Généralisation

Soient P € K[X] et a1, a2,...,ak € K, deux a deux distincts

P(ai)=---=P(ax) =0 ssi (X —a1)...(X — ax) divise P

SF 3 : Obtenir une propriété de divisibilité a I’aide des racines

Exemple 4
Montrer que 1 + X + X2 divise X311 4+ X82 1 x15,

12
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SidegP =n:
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Sideg P =n: P a au plus n racines dans K.

Démontrer le théoreme.
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Soit P € K[X], non nul, et n € N.
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3 Racines et degré
SF 8 : utiliser les racines pour mo est nul

= Sion sait que deg P < n et que P a n+ 1 racines, alors P = 0.

= Si P a une infinité de racines, alors: P =0

[ i.e. Pet @ ont ]

les mémes coefficients
S

Conséquence

Si P(a) = Q(a) en une infinité de valeurs a € K, alors P = Q .

Exemple 5

On suppose que pour tout x € R:  P(e¥) = e® + & + 1.
Calculer :  P(—1) et P())

14



3 Racines et degré
SF 8 : utiliser les racines pour mo est nul

= Sion sait que deg P < n et que P a n+ 1 racines, alors P = 0.

= Si P a une infinité de racines, alors: P =0

[ i.e. Pet @ ont ]

les mémes coefficients
S

Conséquence

Si P(a) = Q(a) en une infinité de valeurs a € K, alors P = Q .

Exemple 6

Montrer qu'il n'existe pas de polynéme P € R[X] tel que :

Vx € R, P(x)=sinx

14



3 Racines et degré
SF 8 : utiliser les racines pour mo est nul

= Sion sait que deg P < n et que P a n+ 1 racines, alors P = 0.

= Si P a une infinité de racines, alors: P =0

[ i.e. Pet @ ont ]

les mémes coefficients
S

Conséquence

Si P(a) = Q(a) en une infinité de valeurs a € K, alors P = Q .

Exemple 7

Soit P € K[X] tel que P(X + 1) = P(X).
Montrer que P est constant.

14



3 Racines et degré
SF 8 : utiliser les racines pour mo est nul

= Sion sait que deg P < n et que P a n+ 1 racines, alors P = 0.

= Si P a une infinité de racines, alors: P =0

[ i.e. Pet @ ont ]

les mémes coefficients
S

Conséquence

Si P(a) = Q(a) en une infinité de valeurs a € K, alors P = Q .

Exemple 8

Trouver tous les polynémes P € R[X] vérifiant :
a) VneN, P(n)=n?+1
b) Vn €N, P(n) = n? +(-1)"

14
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I Polynéme dérivé
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1 Généralités

Soit P = Zaka € K[X] avec n > 1.
k=0

On définit le polynéme dérivé de P par :



1 Généralités

Soit P = Zaka € K[X] avec n > 1.
k=0

n
On définit le polynéme dérivé de P par : P’ = ZkakX"*1
k=1



1 Généralités

n—1
Définition 1 = (k+1)ags1 Xk

Soit P = Zaka € K[X] avec n>1 i

k=0 /
n

On définit le polynéme dérivé de P par : P’ = Zkaka*1
k=1
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1 Généralités

Définition 1

Soit P = Zaka € K[X] avec n > 1.

k=0 /
n

On définit le polynéme dérivé de P par : P’ = kaeXk1

Remarque

» P =0 ssi » SidegP>1: degP =
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1 Généralités

Définition 1

Soit P = Zaka € K[X] avec n > 1.

k=0 /
n

On définit le polynéme dérivé de P par : P’ = kaeXk1

Remarque

» PP=0ssi PeK. » SidegP>1: degP = (degP)—1

16



1 Généralités
ij K+ 1)a Xk
Soit P = Zaka € K[X] avec n>1 i

k=0 - /
=y
k=

On définit le polynéme dérivé de P par : kaeXk1

Remarque

» PP=0ssi PeK. » SidegP>1: degP = (degP)—1

Exercice 1

Soient P, Q € K[X]. Montrer que : (PQ) = P'Q + PQ'.

16



1 Généralités

Définition 1

Soit P = Zaka € K[X] avec n > 1.

k=0 /
n

» PP=0ssi PeK. » SidegP>1: degP = (degP)—1

SF 2 : Calculer le reste de la division euclidienne de A par B

Exemple 1

Calculer le reste de la division euclidienne de X" par X? — 4X + 4.

16



2 Polynémes dérivés d’ordres supérieurs

Notation

On définit par récurrence les polynémes dérivés successifs de P
PO =p «YneN, Pt = (pm)y

17
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Notation

On définit par récurrence les polynémes dérivés successifs de P
« PO = p = VneN, PO = (ph)

Théoreme 1 : Opérations
Soient P, Q@ € K[X], A\, u € K et soit n € N.
= (AP 4+ @) =
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Soient P, Q@ € K[X], A\, u € K et soit n € N.
= (AP + @) = 2P 4 1,Q")
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« PO = p = VneN, PO = (ph)

Théoreme 1 : Opérations

Soient P, Q@ € K[X], A\, u € K et soit n € N.
= (AP + @) = 2P 4 1,Q")

= Formule de Leibniz.  (PQ)(") =
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2 Polynémes dérivés d’ordres supérieurs

Notation

On définit par récurrence les polynémes dérivés successifs de P
« PO = p = VneN, PO = (ph)

Théoreme 1 : Opérations

Soient P, Q@ € K[X], A\, u € K et soit n € N.
= (AP + @) = 2P 4 1,Q")

= Formule de Leibniz.  (PQ)(") = Z <n> p(k) Q(n=k)

k=0

17



2 Polynémes dérivés d’ordres supérieurs

Théoreme 1 : Opérations

Soient P, Q € K[X], \, u € K et soit n € N.
= (AP +pQ)™ = AP 4 Q"

= Formule de Leibniz.  (PQ)(") = > (n) plk) Q(n=k)
k=0

Théoreme 2 : Formule de Taylor polynomiale

Soient a€ K et n € N.

Pour tout P € K,[X]: P =

17



2 Polynémes dérivés d’ordres supérieurs

Théoreme 1 : Opérations

Soient P, Q € K[X], \, u € K et soit n € N.
= (AP +pQ)™ = AP 4 Q"

= Formule de Leibniz.  (PQ)(") = > (n) plk) Q(n=k)
k=0

Théoreme 2 : Formule de Taylor polynomiale

Soient a€ K et n € N.

Pour tout P € K,[X]: P = Z (X — a)k
k=0

17



2 Polynémes dérivés d’ordres supérieurs

Théoreme 1 : Opérations

Soient P, Q € K[X], \, u € K et soit n € N.
= (AP +pQ)™ = AP 4 Q"

= Formule de Leibniz.  (PQ)(") = > (n) plk) Q(n=k)
k=0

Soient a€ K et n € N.

n pk)
Pour tout P € K,[X]: P = ZP (2)

k=0
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2 Polynémes dérivés d’ordres supérieurs

Théoreme 1 : Opérations

Soient P, Q € K[X], \, u € K et soit n € N.
= (AP +pQ)™ = AP 4 Q"

= Formule de Leibniz.  (PQ)(") = > (n) plk) Q(n=k)
k=0

Soient a€ K et n € N.

n pk)
Pour tout P € K,[X]: P = Z ° kl(a) (X — a)k

k=0 \

[ combinaison linéaire de

1, X—=a),...,(X—=a)
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2 Polynémes dérivés d’ordres supérieurs

Théoreme 1 : Opérations

Soient P, Q € K[X], \, u € K et soit n € N.
= (AP +pQ)™ = AP 4 Q"

= Formule de Leibniz.  (PQ)(") = > (n) plk) Q(n=k)
k=0

Soient a€ K et n € N.

n pk)
Pour tout P € K,[X]: P = ZP (2)

24kl \a

combinaison linéaire de

1, (X—=a),..,(X—=a)

Démontrer la formule par récurrence sur n.

17



3 Multiplicité d’une racine

Soit P € K[X] non nul et a € K. La multiplicité de a dans P est le
plus grand m € N tel que (X —a)™ | P.



3 Multiplicité d’une racine

Définition 2

Soit P € K[X] non nul et a € K. La multiplicité de a dans P est le
plus grand m € N tel que (X —a)™ | P.

Autrement dit, a est racine de multiplicité m de P si :
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Autrement dit, a est racine de multiplicité m de P si :

= (X=a)T"|P
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3 Multiplicité d’une racine

Définition 2

Soit P € K[X] non nul et a € K. La multiplicité de a dans P est le
plus grand m € N tel que (X —a)™ | P.

Autrement dit, a est racine de multiplicité m de P si :

= (X—a)"|P et (X—a)ml )P
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3 Multiplicité d’une racine

Définition 2

Soit P € K[X] non nul et a € K. La multiplicité de a dans P est le
plus grand m € N tel que (X —a)™ | P.

Autrement dit, a est racine de multiplicité m de P si :

= (X—a)"|P et (X—a)ml )P

» ouencore:si P=(X—-2a)"Q



3 Multiplicité d’une racine

Définition 2

Soit P € K[X] non nul et a € K. La multiplicité de a dans P est le
plus grand m € N tel que (X —a)™ | P.

Autrement dit, a est racine de multiplicité m de P si :

= (X—a)"|P et (X—a)ml )P
= ouencore:si P=(X—-a)"Q ou Q(a)#0.



3 Multiplicité d’une racine

Définition 2

Soit P € K[X] non nul et a € K. La multiplicité de a dans P est le
plus grand m € N tel que (X —a)™ | P.
Autrement dit, a est racine de multiplicité m de P si :

= (X—a)"|P et (X—a)ml )P
= ouencore:si P=(X—-a)"Q ou Q(a)#0.

Exercice 3

Justifier 'existence d'un plus grand m € N tel que (X —a)™ | P.



3 Multiplicité d’une racine

Définition 2

Soit P € K[X] non nul et a € K. La multiplicité de a dans P est le
plus grand m € N tel que (X —a)™ | P.

Autrement dit, a est racine de multiplicité m de P si :

= (X—a)"|P et (X—a)ml )P
= ouencore:si P=(X—-a)"Q ou Q(a)#0.

Exemple 2 : et vocabulaire

P = (X —1)?(X —3)(X +5)3 possede trois racines: 1, 3 et —5



3 Multiplicité d’une racine

Définition 2

Soit P € K[X] non nul et a € K. La multiplicité de a dans P est le
plus grand m € N tel que (X —a)™ | P.

Autrement dit, a est racine de multiplicité m de P si :

= (X—a)"|P et (X—a)ml )P
= ouencore:si P=(X—-a)"Q ou Q(a)#0.

racine double

Exemple 2 : et vocabulaire (i-e. d'ordre 2)

P = (X —1)?(X —3)(X +5)3 possede trois racines: 1, 3 et —5
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3 Multiplicité d’une racine

Définition 2

Soit P € K[X] non nul et a € K. La multiplicité de a dans P est le
plus grand m € N tel que (X —a)™ | P.

Autrement dit, a est racine de multiplicité m de P si :

= (X—a)"|P et (X—a)ml )P
= ouencore:si P=(X—-a)"Q ou Q(a)#0.

racine double

Exemple 2 : et vocabulaire (i-e. d'ordre 2)

P = (X —1)?(X —3)(X +5)3 possede trois racines: 1, 3 et —5

racine simple

(i.e. d’ordre 1)
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3 Multiplicité d’une racine

Définition 2

Soit P € K[X] non nul et a € K. La multiplicité de a dans P est le
plus grand m € N tel que (X —a)™ | P.

Autrement dit, a est racine de multiplicité m de P si :

= (X—a)"|P et (X—a)ml )P
= ouencore:si P=(X—-a)"Q ou Q(a)#0.

racine triple
(i.e. d’ordre 3)

racine double
(i.e. d’ordre 2)

Exemple 2 : et vocabulaire

P = (X —1)?(X —3)(X +5)3 possede trois racines: 1, 3 et —5

racine simple

(i.e. d’ordre 1)

18



3 Multiplicité d’une racine

Définition 2

Soit P € K[X] non nul et a € K. La multiplicité de a dans P est le
plus grand m € N tel que (X —a)™ | P.

Autrement dit, a est racine de multiplicité m de P si :

= (X—a)"|P et (X—a)ml )P

= ouencore:si P=(X—-a)"Q ou Q(a)#0.

racine triple

racine double )
(i.e. d’ordre 3)

Exemple 2 : et vocabulaire (i-e. d'ordre 2)

P = (X —1)?(X —3)(X +5)3 possede trois racines: 1, 3 et —5

Exemple 3

racine simple
(i.e. d’ordre 1)

Comment trouver la multiplicité de 1 dans

P=X5-4x24+3X 7

18



3 Multiplicité d’une racine

Théoreme 3 : Généralisation des résultats du |l

= Si ay, ..., a, sont racines distinctes de P de multiplicités au moins

MKLg) ocoq M)k =

19



3 Multiplicité d’une racine

Théoreme 3 : Généralisation des résultats du |l

= Si ay, ..., a, sont racines distinctes de P de multiplicités au moins
k

mi, ..., Mg : H(X — a;)™ divise P.
i=1
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3 Multiplicité d’une racine

Théoreme 3 : Généralisation des résultats du |l

= Si ay, ..., a, sont racines distinctes de P de multiplicités au moins
k

mi, ..., Mg : H(X — a;)™ divise P.
i=1
= SidegP =n:
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3 Multiplicité d’une racine

Théoreme 3 : Généralisation des résultats du |l

= Si ay, ..., a, sont racines distinctes de P de multiplicités au moins
k

mi, ..., Mg : H(X — a;)™ divise P.
i=1
= SidegP = n: P a au plus n racines comptées avec multiplicité.

19



4 Polynémes dérivés et racines multiples

Exercice 4

Soit a€ Ketsoit ke N. Onpose: A= (X-—a)".
Calculer AW, Que vaut A(K)(a)?
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4 Polynémes dérivés et racines multiples

Exercice 4

Soit a€ Ketsoit ke N. Onpose: A= (X-—a)".
Calculer AW, Que vaut A(K)(a)?

Soient P € K[X], a € K et m e N*. Il y a équivalence entre :

i) a est racine de P de multiplicité m
i) Pla)=P'(a)=---=Pma)=0 et P™(a)#£0.



4 Polynémes dérivés et racines multiples

Exercice 4

Soit a€ Ketsoit ke N. Onpose: A= (X-—a)".
Calculer AW, Que vaut A(K)(a)?

Soient P € K[X], a € K et m e N*. Il y a équivalence entre :

i) a est racine de P de multiplicité m
i) Pla)=P'(a)=---=Pma)=0 et P™(a)#£0.

Exemple 3
Trouver la multiplicité de 1 dans P = X5 — 4X? 4 3X.



4 Polynémes dérivés et racines multiples

Exercice 4

Soit a€ Ketsoit ke N. Onpose: A= (X-—a)".
Calculer AW, Que vaut A(K)(a)?

Théoréme 4

Soient P € K[X], a € K et m e N*. Il y a équivalence entre :

i) a est racine de P de multiplicité m
i) Pla)=P'(a)=---=Pma)=0 et P™(a)#£0.

Exercice 5 : Ex. 85.1, banque INP

Démontrer I'équivalence du théoréme ci-dessus.



4 Polynémes dérivés et racines multiples

Soient P € K[X], a € K et m € N*. Il y a équivalence entre :

i) a est racine de P de multiplicité m
i) P(a)=P(a)=---=PmNa)=0 et P™(a)+#£0.

Conséquences
= a est racine simple de P ssi [P(a) =0 et P'(a)# 0]

= Si a est de multiplicité m > 1 dans P alors a est de multiplicité
m —1 dans P’




4 Polynémes dérivés et racines multiples

Soient P € K[X], a € K et m € N*. Il y a équivalence entre :

i) a est racine de P de multiplicité m
i) P(a)=P(a)=---=PmNa)=0 et P™(a)+#£0.

Conséquences
= a est racine simple de P ssi [P(a) =0 et P'(a)# 0]

= Si a est de multiplicité m > 1 dans P alors a est de multiplicité
m —1 dans P’

Exemple 4

Soit n > 1. Montrer que X" — 1 n'a que des racines simples dans C



4 Polynémes dérivés et racines multiples

Soient P € K[X], a € K et m € N*. Il y a équivalence entre :
i) a est racine de P de multiplicité m

i) P(a)=P'(a)=---= P(’"*l)(a) =0 et P(’")(a) #0.

Soient P € K[X], a € K et m € N*.
(X — a)™ divise P ssi :




4 Polynémes dérivés et racines multiples

Soient P € K[X], a € K et m € N*. Il y a équivalence entre :

i) a est racine de P de multiplicité m
i) P(a)=P(a)=---=PmNa)=0 et P™(a)+#£0.

Soient P € K[X], a € K et m € N*.
(X — a)™ divise P ssi: P(a) =--- = P(m=1)(a) = 0.

Exercice 5 : Ex. 85.2, banque INP

Trouver a, b € R tels que P = X® + aX? + bX soit divisible par
(X —1)2

20



4 Polynémes dérivés et racines multiples

Soient P € K[X], a € K et m € N*. Il y a équivalence entre :
i) a est racine de P de multiplicité m

i) P(a)=P'(a)=---= P(’"*l)(a) =0 et P(’")(a) #0.

Soient P € K[X], a € K et m € N*.
(X — a)™ divise P ssi: P(a) =--- = P(m=1)(a) = 0.

Exemple 5
Montrer que (X2 + 1)? divise X5 + X% +2X3 +2X2 + X + 1.



Polyndmes scindés et relations
entre coefficients et racines

Polynémes scindés et relations entre coefficients et racines
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1 Polynémes scindés

Définition 1
Soit P € K[X], non constant, de degré n € N*. On dit que P est
scindé sur K si :

= P se factorise dans K[X] en un produit de polynémes de degré 1

ie.: P=

= (C'est équivalent a :
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= Clest equwalent a:
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Définition 1

Soit P € K[X], non constant, de degré n € N*. On dit que P est
scindé[coefficient dominant
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1 Polynémes scindés

Définition 1
Soit P € K[X], non constant, de degré n € N*. On dit que P est
scindé[coefficient dominant

= Pse factorisewans K[X] en un produit de polyndmes de degré 1

ie.: P= )\ H - z) 5 racines
(éventuellement confondues)

= Clest equwalent a : P a nracines dans K comptées avec
multiplicité

Exemple 1

Les polynémes suivants sont-ils scindés sur R ?
a) P=X*-2X%2+1. b) Q=X3-1



1 Polynémes scindés

Définition 1
Soit P € K[X], non constant, de degré n € N*. On dit que P est
scindé[coefficient dominant

= Pse factorisewans K[X] en un produit de polyndmes de degré 1

ie.: P= )\ H — z; <[ 5 RIS ]

(éventuellement confondues)

= Clest equwalent a : P a nracines dans K comptées avec
multiplicité

Exemple 2

n—1

a) | X"—1=]J[(X-w)| b) ZX" nf[x wi)
k=1

k=0




1 Polynémes scindés

Théoreme 1 : d’Alembert-Gauss (Admis)

Tout polynédme non constant de C[X] possede :

En conséquence :
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1 Polynémes scindés

Théoreme 1 : d’Alembert-Gauss (Admis)

Tout polyndme non constant de C[X] posséde :au moins une racine
complexe.

En conséquence :
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1 Polynémes scindés

Théoreme 1 : d’Alembert-Gauss (Admis)

Tout polyndme non constant de C[X] posséde :au moins une racine
complexe.

En conséquence : tout polynéme constant de C[X] est scindé sur C



1 Polynémes scindés

Théoreme 1 : d’Alembert-Gauss (Admis)

Tout polyndme non constant de C[X] posséde :au moins une racine
complexe.

En conséquence : tout polynéme constant de C[X] est scindé sur C

Exercice 1

Démontrer la conséquence par récurrence sur le degré a I'aide du
théoreme de d'Alembert-Gauss

23



2 Relations entre coefficients et racines

Cadre

n
P = Zaka = ap(X —2z1)...(X — z,) est scindé sur K de degré n
k=0
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2 Relations entre coefficients et racines

Lien entre
(ag,...,an) et (z1,...,20)7?

Cadre

n
P = Zaka = ap(X —2z1)...(X — z,) est scindé sur K de degré n
k=0

24



Rappel : le cas n =2

SiP=aX?2+bX+c=aX—2)X— 2)

alors : "z + 2= " Z170 =
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Rappel : le cas n =2

SiP=aX?2+bX+c=aX—2)X— 2)
b

alors : "zt 2= —— " Z170 =
a
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Rappel : le cas n =2

SiP=aX?2+bX+c=aX—2)X— 2)
b

c
alors : "zt 2= —— " Z1Z) ——
a a
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Rappel : le cas n =2

SiP=aX?2+bX+c=aX—2)X— 2)
b

c
alors : "zt 2= —— " Z1Z) ——
a a

Résoudre un systéme non linéaire

. Z1+2o=s
Les solutions de { ! 2 sont

2122 = p
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Rappel : le cas n =2

SiP=aX?2+bX+c=aX—2)X— 2)
b

c
alors : "zt 2= —— " Z1Z) ——
a a

Résoudre un systéme non linéaire

. zZ1+2p=S5s .
Les solutions de { " 2 sont les racines de X?> — sX +p
2122 = p

25



Cas particulier important : le cas n =3

SiP=aX?+bX+c=aX—2z)(X-2n)

c
alors : "m it = —— ®m Zz1Zp ——
a a
Résoudre un systéme non linéaire
. z1+220=S5 .
Les solutions de sont les racines de X2 — sX + p
Z12 = p

Théoréeme 2 : Le cas n =3
Soit P=aX3+bX?+cX+d=a(X—2z)X—2)(X—2z):

26



Cas particulier important : le cas n =3

SiP=aX?+bX+c=aX—2z)(X-2n)

c
alors : "m it = —— ®m Zz1Zp ——
a a
Résoudre un systéme non linéaire
. z1+220=S5 .
Les solutions de sont les racines de X2 — sX + p
Z12 = p

Théoréeme 2 : Le cas n =3
Soit P=aX3+bX?+cX+d=a(X—2z)X—2)(X—2z):

lzl—|—z2—|—23:—5 ] ]
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'21+Z2+Z3:—5 '2122+2123+2223:5 '212223:—5

26



Cas particulier important : le cas n =3

SiP=aX?+bX+c=aX—2z)(X-2n)
c
alors : "m it = —— ®m Zz1Zp ——
a a
Résoudre un systéme non linéaire

Z1+22=s5s

Z12 = p

Théoréme 2 : Lecas n=3

Soit P=aX3+bX?+cX+d=a(X—2z)X—2)(X—2z):

Les solutions de { sont les racines de X2 — sX + p

c d
'21+Z2+Z3:—5 '2122+2123+2223:5 '212223:—5

Exercice 2

Etablir ces relations en développant |'expression factorisée de P.
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Cas particulier important : le cas n =3

Théoréme 2 : Le cas n=3

Soit P=aX3+bX2+ X +d=aX—2z)X—-2)(X-2z):

(o
" 21+22+Z3:*5 " 2122+2123+2223:5 " 212223=f5

SF 5 : Résoudre un systéme non linéaire

Les solutions de

Z1+ 2 +23 =«
2120+ 2123+ 2023 = 3

212223 = 7Y

sont :
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Cas particulier important : le cas n =3

Théoréme 2 : Le cas n=3

Soit P=aX3+bX2+ X +d=aX—2z)X—-2)(X-2z):

(o
" 21+22+Z3:*5 " 2122+2123+2223:5 " 212223=f5

SF 5 : Résoudre un systéme non linéaire

Les solutions de

Z1+ 2 +23 =«
2120+ 2123+ 2023 = 3

212223 = 7Y

sont : les racines de X3 — aX? + X — 1.
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Cas particulier important : le cas n =3

SF 5 : Résoudre un systéeme non linéaire
Les solutions de
Z1+2p+23 =«
212+ 2123+ 2223 =
Z12223 =7

sont : les racines de X3 — aX? + X — 7.

Exemple 3
X+y+z=0

Résoudre  (S):{ xy+yz+xz=—2 d'inconnue (x,y,z) € C3
xyz = —1

26



Le cas général

Apartirde: (X—z)(X—2z)...(X —z) Zakxk
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Le cas général

Apartirde: (X—z)(X—2z)...(X —z) Zaka

"tttz =

" 212+ 2123+ -+ Zp-12Zp =

m Z122...2Zn —



Le cas général

a
Apartirde: (X—z)(X—2z)...(X —z) Z ka

dp—1
dn

.Zl+22+...+zn:_
" 21Z2)+ 2123+ -+ Zp12Zp =

m Z21Z2p...2Zp =
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Le cas général

Apartirde: (X—z)(X—2z)...(X —z) Zaka

Théoréme 2

dn—1
m )+ 2+ +2Zy = — a
n

" 21Z2)+ 2123+ -+ Zp12Zp =

m Z122...2Zn —
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Le cas général

Apartirde: (X—z)(X—2z)...(X —z) Zaka

Théoréme 2

dn—1
m )+ 2+ +2Zy = — a
n

dpn—2

" 21Z2)+ 2123+ -+ Zp12Zp =
n

B 72122 ...2Zn —
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Le cas général

Apartirde: (X—z)(X—2z)...(X —z) Zaka

Théoréme 2

dn—1
m )+ 2+ +2Zy = — a
n

dpn—2

" 21Z2)+ 2123+ -+ Zp12Zp =
n

B 72122 ...2Zn —
coef. de X2
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Le cas général

Apartirde: (X—z)(X—2z)...(X —z) Zaka

Théoréme 2

dn—1
m )+ 2+ +2Zy = — a
n

dpn—2

" 21Z2)+ 2123+ -+ Zp12Zp =
n

" Z1Zy...Z, = (—1)”@
an | coef. de X" 2
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Le cas général

Apartirde: (X—z)(X—2z)...(X —z) Zaka

Théoréme 2

dn—1
m )+ 2+ +2Zy = — a
n

dpn—2

" 21Z2)+ 2123+ -+ Zp12Zp =
n

" Z1Zy...Z, = (—1)”@
an | coef. de X" 2



Le cas général

Apartirde: (X—z)(X—2z)...(X —z) Zakxk

Théoreme 2

dp—1
stz tzy = -

dn

dpn—2

" 2120+ 21723+ -+ Zp—12Zp =
n

m Z21Z2p...2Zp = (_1)'7@
an | coef. de X" 2
Remor (TR

Plus généralement pour tout k € [[1,n] :




Le cas général

Apartirde: (X—z)(X—2z)...(X —z) Zakxk

Théoreme 2

dp—1
stz tzy = -

dn

dpn—2

" 2120+ 21723+ -+ Zp—12Zp =
n

m Z21Z2p...2Zp = (_1)'7@
an | coef. de X" 2
Remor (TR

Plus généralement pour tout k € [[1,n] :

E Zjy Zjy - - - Zjy




Le cas général

A partirde: (X —z)(X —22)---(X_Zn)zzﬁxk

Théoreme 2

itz Zy =

dpn—2

" 2120+ 2123+ -+ Zp-12y =
n

a
m Z21Z2p...2Zp = (_1)n£

an | coef. de X" 2
Remor (TR

Plus généralement pour tout k € [[1,n] :

E Zjy Zjy - - - Zjy

1< <-<ig<n
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Le cas général

A partirde: (X —z)(X —22)---(X_Zn)zzﬁxk

Théoreme 2

itz Zy =

dpn—2

" 2120+ 2123+ -+ Zp-12y =
n

m Z21Z2p...2Zp = (_1)'7%
an | coef. de X" 2
Reror TR

Plus généralement pour tout k € [[1,n] :

an—
Z Zi12/2 .. 'Zik = (_1)k4n .

1< <-<ig<n o
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Le cas général

A partirde: (X —z)(X —22)...(X—zn):Z?Xk
n

Théoréme 2
dn—1

.Zl+22+...+zn:_

dpn—2

" 2120+ 2123+ -+ Zp-12y =
n

m Z21Z2p...2Zp = (_1)'7%
an | coef. de X" 2
Reror TR

Plus généralement pour tout k € [
an—k
Y zizy...z, = ()=

1<ii<--<ix<n k

27



Le cas général

Apartirde: (X—z)(X—2z)...(X —z) Zakxk

Théoréme 2

dp—1
dn

s ntznttze =

dpn—2

" 2120+ 21723+ -+ Zp—12Zp =
n

" 7172, = (—1)"—

Remarque

noté oy :
ke fonction

symétrique E
de z1,...,z,| 1S0<-<iksn

Zj1 Zjy - v -
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Le cas général

Apartirde: (X—z)(X—2z)...(X —z) Zakxk

Théoréme 2

dp—1
= 1tttz = —
dn
an-—2
" 2120+ 2123+ -+ Zp_12Zn =
n
40
" 712> 7 — (_1)/77
dn

noté oy :
ke fonction
symétrique Z ZiZiy .
de z1,...,z, 1<ih<-<ig<n N
— (Formules de Viéte)

dn—k
—1)kIn=X
(-1
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Le cas général

Théoréeme 3
n—1

. Z17y...2p = (—1)”@
a

n

an—
.Z]_+Z2+"'+Zn:—

dan

Remarque

k 5
ke fonction a
o . _ (_1\n—k©%n=k

symétrique >Z ZnZp - Zi = (1) a
1<ih<--<ix<n \ Z

de z1,...,z, —
(Formules de Vlete]

Exemple 4

Soit n > 2. En considérant P = X" — 1, calculer la somme et le
produit des racines n-iemes de |'unité.
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Interpolation de Lagrange

Interpolation de Lagrange
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Probleme de l'interpolation

Données

= Xq,...,X, € K deux a deux distincts.

" yi,...,¥n € K quelconques

30


https://www.desmos.com/calculator/yokpnzidv1

Probleme de l'interpolation

Données

= Xq,...,X, € K deux a deux distincts.

" yi,...,¥n € K quelconques

Probléme de I'interpolation

Trouver un polynéme dont la courbe passe par les points (x, yx) i.e.
trouver P € K[X] telque: P(x1)=y1 , ... , P(xn) = yn.

30


https://www.desmos.com/calculator/yokpnzidv1

Polyn6mes de Lagrange associés a xi, xo, ..., X,

Pour i € [1, n]], on définit le polynéme L; par :

Ce polynéme vérifie :
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Polyn6mes de Lagrange associés a xi, xo, ..., X,

X =X

Pour i € [1, n], on définit le polynéme L; par : L; =
Xj — XJ'

Ce polynéme vérifie :
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Polyn6mes de Lagrange associés a xi, xo, ..., X,

. X — x;
Pour i € [1, n], on définit le polynéme L; par : L; = H 2
; Xi — Xj
1<j<n J
J#i

Ce polynéme vérifie :
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Polyn6mes de Lagrange associés a xi, xo, ..., X,

degli=n—1

Définition 1

X =X

X,'—XJ'

Pour i € [1, n], on définit le polynéme L; par : L; = H
1<j<n
) J#i
Ce polynéme vérifie :
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Polyn6mes de Lagrange associés a xi, xo, ..., X,

Définition 1

X =X

Pour i € [1, n], on définit le polynéme L; par : L; = | |
; Xi — Xj
1<j<n J

JF#i

Ce polynéme vérifie :
[ | L,(X,) = 1 | |
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Polyn6mes de Lagrange associés a xi, xo, ..., X,

degli=n—1

Définition 1

. X — x;
Pour i € [1, n], on définit le polynéme L; par : L; = H 2
; Xi — Xj
1<j<n J
J#i

Ce polynéme vérifie :
n Li(x) =1 = Li(xk) = 0 pour tout k # i

31



Polyn6mes de Lagrange associés a xi, xo, ..., X,

Définition 1

X =X

Pour i € [1, n], on définit le polynéme L; par : L; = | |
; Xi — Xj
1<j<n J

JF#i

Ce polynéme vérifie :
n Li(x) =1 = Li(xk) = 0 pour tout k # i

Exemple 1

Calculer L1 et L3 danslecasou x1 =1, xo =2, x3 = 3 et x4 = 4.
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Polyn6mes interpolateurs de Lagrange

I existe un unique P € K,_1[X] tel que :

Ce polyndme est donné par :



Polyn6mes interpolateurs de Lagrange

Théoréme 1

I existe un unique P € K,_1[X] tel que :
Vke[[]':n]]a 'D(Xk):yk

Ce polyndme est donné par :



Polyn6mes interpolateurs de Lagrange

Théoréme 1

I existe un unique P € K, 1[X] tel que :
Vke[[]':n]]a 'D(Xk):yk

Ce polyndme est donné par :



Polyn6mes interpolateurs de Lagrange

Théoréme 1

I existe un unique P € K, 1[X] tel que :
Vke[[]':n]]a 'D(Xk):yk

n
Ce polyndme est donné par : [P = Z L;.
i=1



Polyn6mes interpolateurs de Lagrange

Théoréme 1

I existe un unique P € K, 1[X] tel que :
Vke[[]':n]]a 'D(Xk):yk

n
Ce polyndme est donné par : [P = Zy,-L,-.
i=1



Polyn6mes interpolateurs de Lagrange

Théoréme 1

Il existe un unique P € K, {[X] tel que :
Vke[[]':n]]a 'D(Xk):yk

n
Ce polyndme est donné par : [P = Zy,-L,-.
i=1

Exercice 1 : Ex. 87.1, banque INP

Démontrer le théoreme



Polyn6mes interpolateurs de Lagrange

Théoréme 1

I existe un unique P € K, 1[X] tel que :
Vke[[]':n]]a 'D(Xk):yk

n
Ce polyndme est donné par : [P = Zy,-L,-.
i=1

Exemple 2 : Déterminer le polyndme P € R3[X] tel que
1. P(1)=1, P(2)=0, P(B)=-1 e P(4)=0.



Polyn6mes interpolateurs de Lagrange

Théoréme 1

I existe un unique P € K, 1[X] tel que :
Vke[[]':n]]a 'D(Xk):yk

n
Ce polyndme est donné par : [P = Zy,-L,-.
i=1

Exemple 2 : Déterminer le polyndme P € R3[X] tel que
1. P(1)=1, P(2)=0, P(B)=-1 e P(4)=0.
2. P(1)=1, P(2)=4, P(3)=9 et P(4)=16.



Polyn6mes interpolateurs de Lagrange

Théoréme 1

Il existe un unique P € K, 1[X] tel que :
Vk € [[17”]]7 P(Xk) = Yk

n
Ce polyndme est donné par : [P = Zy,-L,-.
i=1

Exemple 3 : Ex. 87.3, banque INP

Simplifier :  a) Z L;
i=1



Polyn6mes interpolateurs de Lagrange

Théoréme 1

Il existe un unique P € K, 1[X] tel que :
Vk € [[17”]]7 P(Xk) = Yk

n
Ce polyndme est donné par : [P = Zy,-L,-.
i=1

Exemple 3 : Ex. 87.3, banque INP

Simplifier : b) ZX,'L,'
i=1



Polyn6mes interpolateurs de Lagrange

Théoréme 1

Il existe un unique P € K, 1[X] tel que :
Vk € [[17”]]7 P(Xk) = Yk

n
Ce polyndme est donné par : [P = Zy,-L,-.
i=1

Exemple 3 : Ex. 87.3, banque INP

n
Simplifier : c) inpL,- pour tout p € [0,n — 1]
i=1



	[boxsep=0pt,left=3pt,right=3pt,top=1pt,bottom=1pt, boxrule=0pt,bottomrule=1pt,toprule=1pt,ignore nobreak=false,colback=grismetal,colframe=grismetal,coltext=white,before skip=.5cm,on line,sharp corners]I Divisibilité et division euclidienne
	1 Degré d'un polynôme
	2 Composition
	3 Diviseurs, multiples
	4 Division euclidienne

	[boxsep=0pt,left=3pt,right=3pt,top=1pt,bottom=1pt, boxrule=0pt,bottomrule=1pt,toprule=1pt,ignore nobreak=false,colback=grismetal,colframe=grismetal,coltext=white,before skip=.5cm,on line,sharp corners]II Racines d'un polynôme
	1 Evaluation d'un polynôme
	2 Racines et divisibilité
	3 Racines et degré

	[boxsep=0pt,left=3pt,right=3pt,top=1pt,bottom=1pt, boxrule=0pt,bottomrule=1pt,toprule=1pt,ignore nobreak=false,colback=grismetal,colframe=grismetal,coltext=white,before skip=.5cm,on line,sharp corners]III Polynôme dérivé
	1 Généralités 
	2 Polynômes dérivés d'ordres supérieurs
	3 Multiplicité d'une racine
	4 Polynômes dérivés et racines multiples

	[boxsep=0pt,left=3pt,right=3pt,top=1pt,bottom=1pt, boxrule=0pt,bottomrule=1pt,toprule=1pt,ignore nobreak=false,colback=grismetal,colframe=grismetal,coltext=white,before skip=.5cm,on line,sharp corners]IV Polynômes scindés et relations entre coefficients et racines
	1 Polynômes scindés
	2 Relations entre coefficients et racines

	[boxsep=0pt,left=3pt,right=3pt,top=1pt,bottom=1pt, boxrule=0pt,bottomrule=1pt,toprule=1pt,ignore nobreak=false,colback=grismetal,colframe=grismetal,coltext=white,before skip=.5cm,on line,sharp corners]V Interpolation de Lagrange

