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1 Définition et propriétés des lois de composition interne

Définition 1
Une loi de composition interne sur E est :

une application de E × E
dans E .

Exemple 1
Donner une loi de composition interne sur :
a) N b) Z c) P(E ) d) F (E , E )

Ensemble non vide
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1 Définition et propriétés des lois de composition interne

Définition 2
Une loi de composition interne ⋆ sur E est dite :
• Commutative si :

∀x , y ∈ E , x ⋆ y = y ⋆ x .

• Associative si :

∀x , y , z ∈ E , (x ⋆ y) ⋆ z = x ⋆ (y ⋆ z)

Exemple 2
Sont-elles associatives ? commutatives ?
a) L’addition sur N
b) La soustraction sur Z
c) La réunion sur P(E )
d) La composition sur F (E , E )

Loi « générique » sur E
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1 Définition et propriétés des lois de composition interne

Notation
Si ⋆ est associative l’élément x ⋆ x ⋆ · · · ⋆ x est noté :
•

ou bien xn

•

ou bien nx

Définition 3
Soit (E , ⋆) et (F , ·) deux ensembles munis de lois de composition
interne. On pose pour tous x , x ′ ∈ E et y , y ′ ∈ F :

(x , y) × (x ′, y ′) =
déf.

(x ⋆ x ′ , y · y ′)

Exercice 1
Montrer que si ⋆ et · sont associatives, la loi produit × l’est aussi.

n fois
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2 Propriétés des éléments

Définition 4
On dit que e ∈ E est un élément neutre pour ⋆ si :

∀x ∈ E , x ⋆ e = e ⋆ x = x

Exemple 3 : Donner l’élément neutre
a) (R, +) b) (R, ×) c) (P(E ), ∩) d) (P(E ), ∪) e) (F (E,E ), ◦)

Exercice 2 : Unicité de l’élément neutre
Montrer que s’il existe un élément neutre pour ⋆, alors il est unique.

LCI sur E
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2 Propriétés des éléments

Remarque
Par convention : x0 =

e

Définition 5
Un élément x de E est dit inversible pour ⋆ si

il existe x ′ ∈ E tel
que : x ⋆ x ′ = x ′ ⋆ x = e.

Exemple 4 : Donner les éléments inversibles
a) (Z, +) b) (N, +) c) (R, ×) d) (Z, ×) e) (F (E , E ), ◦)

Un inverse de x
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2 Propriétés des éléments

Théorème 1 : Propriétés des éléments inversibles
On suppose que ⋆ est associative et possède un élément neutre e.
Soient x , y ∈ E , inversibles et n ∈ N.

i) x possède un unique inverse
ii) x−1 est inversible et :

(
x−1)−1 = x .

iii) x ⋆ y est inversible et :

(x ⋆ y)−1 = y−1 ⋆ x−1.

iv) xn est inversible et :

(xn)−1 = (x−1)n

Exercice 3
Démontrer les points i) et iii) du théorème.

noté x−n
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3 Permutations

Définition 6
Une permutation de E est :

une bijection de E sur E .

Exercice 4
Montrer que la composition est une loi de composition interne sur
SE

Exemple 5
On suppose que ⋆ est associative et possède un élément neutre e.
Soit a ∈ E , inversible. Montrer que les applications

γa : x 7→ a ⋆ x et δa : x 7→ x ⋆ a

sont des permutations de E .

Ensemble noté SE
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Une permutation de E est : une bijection de E sur E .

Exercice 4
Montrer que la composition est une loi de composition interne sur
SE

Exemple 5
On suppose que ⋆ est associative et possède un élément neutre e.
Soit a ∈ E , inversible. Montrer que les applications

γa : x 7→ a ⋆ x et δa : x 7→ x ⋆ a

sont des permutations de E .

Ensemble noté SE
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II Groupes

I Lois de composition interne

II Groupes

III Anneaux
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1 Généralités

Définition 1
Soit G un ensemble muni d’une loi de composition interne ⋆.
On dit que (G , ⋆) est un groupe si :

i) ⋆ est associative ;
ii) (G , ⋆) a un élément neutre ;
iii) Tout élément de G est inversible.

Si de plus, ⋆ est commutative, on dit que G est commutatif.

11
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On dit que (G , ⋆) est un groupe si :
i) ⋆ est associative ;
ii) (G , ⋆) a un élément neutre ;
iii) Tout élément de G est inversible.
Si de plus, ⋆ est commutative, on dit que G est commutatif.

Exemple 1 : Sont-ils des groupes ?
1. a) (N, +) b) (Z, +) c) (Q, +) d) (R, +) e) (C, +)
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1 Généralités

Définition 1
Soit G un ensemble muni d’une loi de composition interne ⋆.
On dit que (G , ⋆) est un groupe si :
i) ⋆ est associative ;
ii) (G , ⋆) a un élément neutre ;
iii) Tout élément de G est inversible.
Si de plus, ⋆ est commutative, on dit que G est commutatif.

Exemple 1 : Sont-ils des groupes ?
2. a) (R, ×) b) (R∗, ×) c) (C∗, ×) d) (Z∗, ×)

11



1 Généralités

Définition 1
Soit G un ensemble muni d’une loi de composition interne ⋆.
On dit que (G , ⋆) est un groupe si :
i) ⋆ est associative ;
ii) (G , ⋆) a un élément neutre ;
iii) Tout élément de G est inversible.
Si de plus, ⋆ est commutative, on dit que G est commutatif.

Exemple 1 : Sont-ils des groupes ?
3. a) (F (E , E ) , ◦) b) (SE , ◦)
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1 Généralités

Définition 1
Soit G un ensemble muni d’une loi de composition interne ⋆.
On dit que (G , ⋆) est un groupe si :
i) ⋆ est associative ;
ii) (G , ⋆) a un élément neutre ;
iii) Tout élément de G est inversible.
Si de plus, ⋆ est commutative, on dit que G est commutatif.

Exercice 1
Montrer que si (G , ⋆) et (G ′, ·) sont des groupes, alors G × G ′ est
un groupe pour la loi produit .

(x , y) × (x ′, y ′) =
déf.

(x ⋆ x ′ , y · y ′)
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2 Sous-groupes

Définition 2
On dit que H est un sous-groupe de G si :

i) H est non vide

ii) H est stable par ⋆ :

∀x , y ∈ H, x ⋆ y ∈ H

iii) H est stable par passage à l’inverse :

∀x ∈ H, x−1 ∈ H

Partie de G (G , ⋆)
est un groupe
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2 Sous-groupes

Définition 2
On dit que H est un sous-groupe de G si :
i) H est non vide
ii) H est stable par ⋆ : ∀x , y ∈ H, x ⋆ y ∈ H
iii) H est stable par passage à l’inverse : ∀x ∈ H, x−1 ∈ H

Exemple 2 : Vrai ou faux ?
a) Z est un sous-groupe de (R, +)
b) R∗

+ est un sous-groupe de (R∗, ×)

Partie de G (G , ⋆)
est un groupe
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2 Sous-groupes

Définition 2
On dit que H est un sous-groupe de G si :
i) H est non vide
ii) H est stable par ⋆ : ∀x , y ∈ H, x ⋆ y ∈ H
iii) H est stable par passage à l’inverse : ∀x ∈ H, x−1 ∈ H

Exercice 2
Soit H un sous-groupe de G . On note e l’élément neutre de G .
Montrer que : e ∈ H.

Partie de G (G , ⋆)
est un groupe
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2 Sous-groupes

Théorème 1
Si H est un sous-groupe de G , alors (H, ⋆) est :

un groupe.
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2 Sous-groupes

Théorème 1
Si H est un sous-groupe de G , alors (H, ⋆) est : un groupe.

Exercice 3
Démontrer le théorème
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2 Sous-groupes

Théorème 1
Si H est un sous-groupe de G , alors (H, ⋆) est : un groupe.

SF 1 : pour montrer que G est groupe
On peut montrer que c’est un sous-groupe d’un groupe de référence

Exemple 3
a) Montrer que (U, ×) est un groupe.
b) Montrer que Un est un sous groupe de U.

13



3 Morphismes de groupes

Cadre
(G , ·) f−→ (G ′, ⋆)

Définition 3
f est un morphisme de groupes si :

∀x , y ∈ G , f (x · y) = f (x) ⋆ f (y)
isomorphisme

=
morphisme + bijectif
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3 Morphismes de groupes

Cadre
(G , ·) f−→ (G ′, ⋆)

Définition 3
f est un morphisme de groupes si :

∀x , y ∈ G , f (x · y) = f (x) ⋆ f (y)

Exemple 4
a) exp : (R, +) → (R∗, ×) est un morphisme de groupes
b) ln : (R∗

+, ×) → (R, +) est un morphisme de groupes

isomorphisme
=

morphisme + bijectif
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3 Morphismes de groupes

Cadre
(G , ·) f−→ (G ′, ⋆)

Définition 3
f est un morphisme de groupes si :

∀x , y ∈ G , f (x · y) = f (x) ⋆ f (y)

Exercice 4
Montrer : a) f (e) = e′ b) ∀x ∈ G , f (x−1) = f (x)−1

isomorphisme
=

morphisme + bijectif

14



3 Morphismes de groupes

Définition 4
Soit f : G → G ′ un morphisme de groupe.
• Le noyau de f , noté Ker f , est l’ensemble des antécédents de e′

par f :

Ker f = {x ∈ G | f (x) = e′}
• L’image de f , notée Im f , est l’ensemble :

Im f =
déf.

f (G) ={f (x) ; x ∈ G}
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3 Morphismes de groupes

Définition 4
Soit f : G → G ′ un morphisme de groupe.
• Le noyau de f , noté Ker f , est l’ensemble des antécédents de e′

par f : Ker f = {x ∈ G | f (x) = e′}
• L’image de f , notée Im f , est l’ensemble :

Im f =
déf.

f (G) ={f (x) ; x ∈ G}

Exercice 5
Montrer que :
a) Ker f est un sous-groupe de G
b) Im f est un sous-groupe de G ′
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3 Morphismes de groupes

Définition 4
Soit f : G → G ′ un morphisme de groupe.
• Le noyau de f , noté Ker f , est l’ensemble des antécédents de e′

par f : Ker f = {x ∈ G | f (x) = e′}
• L’image de f , notée Im f , est l’ensemble :

Im f =
déf.

f (G) ={f (x) ; x ∈ G}

Exemple 5
L’application f : z 7→ ez est un morphisme de (C, +) dans (C∗, ×).
Déterminer son noyau.
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3 Morphismes de groupes

Théorème 2
Soit f : G → G ′ un morphisme de groupe.
• f est injectif ssi :

Ker f = {e}
• f est surjectif ssi :

Im f = G ′

16
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3 Morphismes de groupes

Théorème 2
Soit f : G → G ′ un morphisme de groupe.
• f est injectif ssi : Ker f = {e}
• f est surjectif ssi : Im f = G ′

Exercice 6
Démontrer la première équivalence.
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3 Morphismes de groupes

Théorème 2
Soit f : G → G ′ un morphisme de groupe.
• f est injectif ssi : Ker f = {e}
• f est surjectif ssi : Im f = G ′

Exemple 6
Montrer que l’application φ : g 7→ γg est un morphisme de groupe
injectif de G dans S(G).

16



3 Morphismes de groupes

Théorème 2
Soit f : G → G ′ un morphisme de groupe.
• f est injectif ssi : Ker f = {e}
• f est surjectif ssi : Im f = G ′

Exemple 7
1. Montrer que les morphismes de Un dans Un sont les applications

z 7→ zp pour p ∈ J0 , n − 1K
2. Soit p ∈ J0 , n − 1K. Montrer que f : z 7→ zp est un isomorphisme

si et seulement si p ∧ n = 1.

16



III Anneaux

I Lois de composition interne

II Groupes

III Anneaux
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1 Généralités

Définition 1
Soit A un ensemble muni de deux lois de compositions internes + et
×. On dit que (A, +, ×) est un anneau si :

i) (A, +) est un groupe commutatif, d’élément neutre noté 0A.

ii) La loi ×

•

est associative

•

possède un élément neutre noté 1A

iii) × est distributive sur + i.e.
{

x × (y + z) = x × y + x × z
(y + z) × x = y × x + z × xpour tous x , y , z ∈ A

18
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1 Généralités

Définition 1
Soit A un ensemble muni de deux lois de compositions internes + et
×. On dit que (A, +, ×) est un anneau si :
i) (A, +) est un groupe commutatif, d’élément neutre noté 0A.
ii) La loi × • est associative • possède un élément neutre noté 1A

iii) × est distributive sur + i.e.
{

x × (y + z) = x × y + x × z
(y + z) × x = y × x + z × xpour tous x , y , z ∈ A

Exemple 1 : Exemples d’anneaux commutatifs
(Z, +, ×), (Q, +, ×), (R, +, ×), (C, +, ×)
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1 Généralités

Définition 1
Soit A un ensemble muni de deux lois de compositions internes + et
×. On dit que (A, +, ×) est un anneau si :
i) (A, +) est un groupe commutatif, d’élément neutre noté 0A.
ii) La loi × • est associative • possède un élément neutre noté 1A

iii) × est distributive sur + i.e.
{

x × (y + z) = x × y + x × z
(y + z) × x = y × x + z × xpour tous x , y , z ∈ A

Définition 2
Un corps est un anneau commutatif, non réduit à {0} et dans lequel
tout élément autre que 0 est inversible.

Exercice 1 : Sont-ils des corps ?
a) (Z, +, ×) b) (Q, +, ×) c) (R, +, ×) d) (C, +, ×)
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1 Généralités

Définition 1
Soit A un ensemble muni de deux lois de compositions internes + et
×. On dit que (A, +, ×) est un anneau si :
i) (A, +) est un groupe commutatif, d’élément neutre noté 0A.
ii) La loi × • est associative • possède un élément neutre noté 1A

iii) × est distributive sur + i.e.
{

x × (y + z) = x × y + x × z
(y + z) × x = y × x + z × xpour tous x , y , z ∈ A

Exercice 2
Soit (A, +, ×) un anneau a, b ∈ A et n ∈ Z. Montrer que :
a) a × 0A = 0A b) (−a)×b =−(a × b) c) (na) × b = n(a × b)
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1 Généralités

Théorème 1 : Règles de calcul
Soit (A, +, ×) un anneau et soient a, b ∈ A. Si a × b = b × a
alors, pour tout n ∈ N :

• an − bn = (a − b) ×
n−1∑
k=0

ak × bn−1−k .

• (a + b)n =
n∑

k=0

(
n
k

)
ak × bn−k

Définition 3
On note U(A) l’ensemble des éléments de A inversibles pour ×.

Exemple 2
• U(Z) =

{−1, 1}

•

U(R) =

R∗

•

(U(A), ×) est

un groupe

Formule
du binôme

j (A, ×) n’est pas un groupe j
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2 Sous-anneaux

Exemple 2
• U(Z) = {−1, 1} • U(R) = R∗ • (U(A), ×) est un groupe

Définition 4
On dit que B est un sous-anneau de A si :

i) 1A ∈ B
ii) B est un sous-groupe de (A, +).
iii) B stable par × i.e. : ∀x , y ∈ B, x × y ∈ B

j (A, ×) n’est pas un groupe j

partie de A (A, +, ×)
est un anneau
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i) 1A ∈ B
ii) B est un sous-groupe de (A, +).
iii) B stable par × i.e. : ∀x , y ∈ B, x × y ∈ B

Exemple 3
Z est un sous-anneau de Q lui-même sous-anneau de R, lui-même
sous-anneau de C.

j (A, ×) n’est pas un groupe j

partie de A (A, +, ×)
est un anneau
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2 Sous-anneaux

Exemple 2
• U(Z) = {−1, 1} • U(R) = R∗ • (U(A), ×) est un groupe

Définition 4
On dit que B est un sous-anneau de A si :
i) 1A ∈ B
ii) B est un sous-groupe de (A, +).
iii) B stable par × i.e. : ∀x , y ∈ B, x × y ∈ B

Exemple 4
L’ensemble F (R,R) des fonctions de R dans R est un anneau pour
la multiplication et l’addition des fonctions. Dans cet anneau
l’ensemble des fonctions dérivables est un sous-anneau.

j (A, ×) n’est pas un groupe j

partie de A (A, +, ×)
est un anneau
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3 Morphismes d’anneaux

Définition 5
On dit que B est un sous-anneau de A si :
i) 1A ∈ B
ii) B est un sous-groupe de (A, +).
iii) B stable par × i.e. : ∀x , y ∈ B, x × y ∈ B

Définition 6
Une application f : A → B est un morphisme d’anneaux si :
i)

f (1A) = 1B

ii) ∀x , y ∈ A, f (x + y) = f (x) + f (y)
iii) ∀x , y ∈ A, f (x · y) = f (x) × f (y)

(A, +, ·)
est un anneau (B, +, ×)

est un anneau
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iii) ∀x , y ∈ A, f (x · y) = f (x) × f (y)

Remarque
f est en particulier un morphisme de groupes entre (A, +) et (B, +)
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est un anneau (B, +, ×)
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Si f est un morphisme d’anneau : f est injectif ssi Ker f = {0A}
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Retenir

Si f est un morphisme d’anneau : f est injectif ssi Ker f = {0A}

(A, +, ·)
est un anneau (B, +, ×)

est un anneau

j Ker f = {x ∈ A | f (x) = 0B} j
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3 Morphismes d’anneaux

Définition 5
Une application f : A → B est un morphisme d’anneaux si :
i) f (1A) = 1B

ii) ∀x , y ∈ A, f (x + y) = f (x) + f (y)
iii) ∀x , y ∈ A, f (x · y) = f (x) × f (y)

Exemple 5
Trouver tous les morphismes de corps f de C dans C tels que pour
tout x ∈ R : f (x) = x

(A, +, ·)
est un anneau (B, +, ×)

est un anneau
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4 Anneaux intègres

Définition 6
Un anneau commutatif non nul (A, +, ×) est intègre si pour tous
x , y ∈ A :

x × y = 0A =⇒ x = 0A ou y = 0A
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Définition 6
Un anneau commutatif non nul (A, +, ×) est intègre si pour tous
x , y ∈ A : x × y = 0A =⇒ x = 0A ou y = 0A

Remarque
Dans un anneau intègre si x ̸= 0A, l’égalité : x × y = x × z
impose : y = z
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4 Anneaux intègres

Définition 6
Un anneau commutatif non nul (A, +, ×) est intègre si pour tous
x , y ∈ A : x × y = 0A =⇒ x = 0A ou y = 0A

Exemple 6
• Z est un anneau intègre • Tout corps est un anneau intègre.
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4 Anneaux intègres

Définition 6
Un anneau commutatif non nul (A, +, ×) est intègre si pour tous
x , y ∈ A : x × y = 0A =⇒ x = 0A ou y = 0A

Exercice 3
Montrer que l’anneau F (R,R) des fonctions de R dans R n’est pas
intègre.
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