
Dérivabilité

Chapitre 14.0



Cadre

• I est un intervalle non vide et non réduit à un point
• a ∈ I
• f ∶ I → R

1



I Dérivée en un point

I Dérivée en un point

II Justifier la dérivabilité

III Fonctions de classe Cn

2



1 Définition

Définition 1
La fonction f est dérivable en a si son taux d’accroissement en a,

τa ∶ x ↦
f (x) − f (a)

x − a
possède une limite finie en a.

En ce cas on pose : f ′(a) = lim
x→a

f (x) − f (a)
x − a
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1 Définition

Définition 1
La fonction f est dérivable en a si son taux d’accroissement en a,
τa ∶ x ↦

f (x) − f (a)
x − a

possède une limite finie en a.

En ce cas on pose : f ′(a) = lim
x→a

f (x) − f (a)
x − a

Exemple 1 : Etudier la dérivabilité en 0 Figure

f ∶ x ↦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x sin(1
x
) si x > 0

0 si x = 0
g ∶ x ↦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x2 sin(1
x
) si x > 0

0 si x = 0
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1 Définition

Définition 1
La fonction f est dérivable en a si son taux d’accroissement en a,
τa ∶ x ↦

f (x) − f (a)
x − a

possède une limite finie en a.

En ce cas on pose : f ′(a) = lim
x→a

f (x) − f (a)
x − a

Exercice 1
Montrer que f est dérivable en a ssi il existe ℓ ∈ R tel que :

∀x ∈ I, f (x) = f (a) + ℓ(x − a) + ε(x)(x − a)

où ε ∶ I → R vérifie : ε(x) Ð→
x→a

0.
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1 Définition

Vocabulaire

f est dérivable à droite en a si τa ∶ x ↦
f (x) − f (a)

x − a
possède une

limite finie à droite en a. On note alors : f ′d(a) = lim
x→a+

f (x) − f (a)
x − a

.

Théorème 1
Supposons que a est un point intérieur à I. f est dérivable en a ssi :

f est dérivable à gauche et à droite en a et f ′d(a) = f ′g(a)
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f (x) − f (a)
x − a
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1 Définition

Vocabulaire

f est dérivable à droite en a si τa ∶ x ↦
f (x) − f (a)

x − a
possède une

limite finie à droite en a. On note alors : f ′d(a) = lim
x→a+

f (x) − f (a)
x − a

.

Théorème 1
Supposons que a est un point intérieur à I. f est dérivable en a ssi :
f est dérivable à gauche et à droite en a et f ′d(a) = f ′g(a)

Exemple 2
Montrer que la fonction f ∶ x ↦ ∣Arctan x ∣ est dérivable à gauche et
à droite en 0 mais n’est pas dérivable en 0.
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1 Définition

Vocabulaire

f est dérivable à droite en a si τa ∶ x ↦
f (x) − f (a)

x − a
possède une

limite finie à droite en a. On note alors : f ′d(a) = lim
x→a+

f (x) − f (a)
x − a

.

Théorème 1
Supposons que a est un point intérieur à I. f est dérivable en a ssi :
f est dérivable à gauche et à droite en a et f ′d(a) = f ′g(a)

Exemple 3
On suppose que f est convexe et que a est un point intérieur à I.
Montrer que f est dérivable à gauche et à droite en a.
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2 Dérivabilité et continuité

DÉRIVABILITÉ,
CONTINUITÉ

5



2 Dérivabilité et continuité

DÉRIVABILITÉ,
CONTINUITÉ

5
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DÉRIVABILITÉ,
CONTINUITÉ

Graphe « lisse »

au voisinage de a :
« f (x) ≈ f (a)+ f ′(a)(x −a) »

Graphe « sans trou »
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« f (x) ≈ f (a) »
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2 Dérivabilité et continuité

Remarque
Si f est dérivable en a pour x ∈ I :

f (x) = f (a) + f ′(a)(x − a) + ε(x)(x − a) où ε(x) Ð→
x→a

0

Théorème 2
Si f est dérivable en a, alors :

f est continue en a.
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2 Dérivabilité et continuité

Remarque
Si f est dérivable en a pour x ∈ I :

f (x) = f (a) + f ′(a)(x − a) + ε(x)(x − a) où ε(x) Ð→
x→a

0

Théorème 2
Si f est dérivable en a, alors : f est continue en a.

Exercice 2
Démontrer ce théorème.
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2 Dérivabilité et continuité

Remarque
Si f est dérivable en a pour x ∈ I :

f (x) = f (a) + f ′(a)(x − a) + ε(x)(x − a) où ε(x) Ð→
x→a

0

Théorème 2
Si f est dérivable en a, alors : f est continue en a.

j Attention j La réciproque est fausse, par exemple :

x ↦ ∣x ∣ est
continue en 0 mais n’y est pas dérivable
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3 Extremum local

Définition 2
f possède un maximum local en a si :

au voisinage de a, f (x) ≤ f (a)
i.e. s’il existe α > 0 tel que :

∀x ∈ ]a − α , a + α[ ∩ I, f (x) ≤ f (a)

Théorème 3
On suppose que • a est un point intérieur à I • f est dérivable en a

Si f possède un extremum local en a alors : f ′(a) = 0
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3 Extremum local

Définition 2
f possède un maximum local en a si : au voisinage de a, f (x) ≤ f (a)
i.e. s’il existe α > 0 tel que :

∀x ∈ ]a − α , a + α[ ∩ I, f (x) ≤ f (a)

Théorème 3
On suppose que • a est un point intérieur à I • f est dérivable en a
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3 Extremum local

Définition 2
f possède un maximum local en a si : au voisinage de a, f (x) ≤ f (a)
i.e. s’il existe α > 0 tel que :

∀x ∈ ]a − α , a + α[ ∩ I, f (x) ≤ f (a)

Théorème 3
On suppose que • a est un point intérieur à I • f est dérivable en a
Si f possède un extremum local en a alors : f ′(a) = 0

Exemple 4 : j Attention j

Prouver que la réciproque du théorème précédent est fausse

a est un point
critique de f
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3 Extremum local

Définition 2
f possède un maximum local en a si : au voisinage de a, f (x) ≤ f (a)
i.e. s’il existe α > 0 tel que :

∀x ∈ ]a − α , a + α[ ∩ I, f (x) ≤ f (a)

Théorème 3
On suppose que • a est un point intérieur à I • f est dérivable en a
Si f possède un extremum local en a alors : f ′(a) = 0

Exercice 3
Démontrer ce théorème dans le cas d’un maximum local.

a est un point
critique de f
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3 Extremum local

Définition 2
f possède un maximum local en a si : au voisinage de a, f (x) ≤ f (a)
i.e. s’il existe α > 0 tel que :

∀x ∈ ]a − α , a + α[ ∩ I, f (x) ≤ f (a)

Théorème 3
On suppose que • a est un point intérieur à I • f est dérivable en a
Si f possède un extremum local en a alors : f ′(a) = 0

Exemple 5 : Bonus : vrai ou faux ?
Si f possède un minimum en a alors f est décroissante à gauche de
a et croissante à droite

au voisinage de a Figure

a est un point
critique de f
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3 Extremum local
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1 Opérations sur les dérivées

Théorème 1 : Opérations algébriques
Soient u, v deux fonction dérivables en a et soient λ, µ ∈ R.
• λu + µv est dérivable en a et (λu + µv)′(a) = λu′(a) + µv ′(a)
• uv est dérivable en a et :

(uv)′(a) = u′(a)v(a) + u(a)v ′(a)

• Si v(a) ≠ 0, u
v

est dérivable en a et :

(u
v
)
′
(a) = u′(a)v(a) − u(a)v ′(a)

v2(a)

Exercice 1
Etablir la formule pour le produit.
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1 Opérations sur les dérivées

Cadre

I uÐ→ J vÐ→ R
a z→ u(a)

z→

v(u(a))

Théorème 2 : Composition
Si u est dérivable en a et si v est dérivable en u(a) alors v ○ u est
dérivable en a et :

(v ○ u)′(a) = u′(a) × v ′(u(a))

v ○ u
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1 Opérations sur les dérivées

Cadre

I uÐ→ J vÐ→ R
a z→ u(a)

z→

v(u(a))

Théorème 2 : Composition
Si u est dérivable en a et si v est dérivable en u(a) alors v ○ u est
dérivable en a et :

(v ○ u)′(a) = u′(a) × v ′(u(a))

v ○ u
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1 Opérations sur les dérivées

Cadre

I uÐ→ J vÐ→ R
a z→ u(a) z→ v(u(a))

Théorème 2 : Composition
Si u est dérivable en a et si v est dérivable en u(a) alors v ○ u est
dérivable en a et :

(v ○ u)′(a) = u′(a) × v ′(u(a))

Exercice 2
Démontrer la formule précédente.

v ○ u
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1 Opérations sur les dérivées

Cadre

I uÐ→ J vÐ→ R
a z→ u(a) z→ v(u(a))

Théorème 2 : Composition
Si u est dérivable en a et si v est dérivable en u(a) alors v ○ u est
dérivable en a et :

(v ○ u)′(a) = u′(a) × v ′(u(a))

Exemple 1
Justifier la dérivabilité de : a) f ∶ x ↦

√
(x − 1) ln x sur [1 ,+∞[

v ○ u
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1 Opérations sur les dérivées

Cadre

I uÐ→ J vÐ→ R
a z→ u(a) z→ v(u(a))

Théorème 2 : Composition
Si u est dérivable en a et si v est dérivable en u(a) alors v ○ u est
dérivable en a et :

(v ○ u)′(a) = u′(a) × v ′(u(a))

Exemple 1
Justifier la dérivabilité de : b) f ∶ x ↦ Arcsin(1−x2) sur [0 ,

√
2[

v ○ u
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2 Dérivation des fonctions réciproques

• Cadre. f est continue sur I et strictement monotone
• Rappel.

f est bijective de I sur f (I) et f −1 est continue sur f (I)

Théorème 3
On pose : b = f (a).
On suppose que f est dérivable en a et que

f ′(a) ≠ 0

Alors f −1 est dérivable en b et :

(f −1)′(b) = 1
f ′(f −1(b))
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• Cadre. f est continue sur I et strictement monotone
• Rappel. f est bijective de I sur f (I) et f −1 est continue sur f (I)

Théorème 3
On pose : b = f (a).
On suppose que f est dérivable en a et que f ′(a) ≠ 0
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2 Dérivation des fonctions réciproques

Théorème 3
On pose : b = f (a).
On suppose que f est dérivable en a et que f ′(a) ≠ 0

Alors f −1 est dérivable en b et : (f −1)′(b) = 1
f ′(f −1(b))

Exercice 3
Démontrer la formule précédente.

= 1
f ′(a)
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2 Dérivation des fonctions réciproques

Théorème 3
On pose : b = f (a).
On suppose que f est dérivable en a et que f ′(a) ≠ 0

Alors f −1 est dérivable en b et : (f −1)′(b) = 1
f ′(f −1(b))

Rappel
Ce théorème justifie la dérivabilité de Arccos et Arcsin sur ]−1 , 1[
et la dérivabilité de Arctan sur R.
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2 Dérivation des fonctions réciproques

Théorème 3
On pose : b = f (a).
On suppose que f est dérivable en a et que f ′(a) ≠ 0

Alors f −1 est dérivable en b et : (f −1)′(b) = 1
f ′(f −1(b))

j Attention j

• Arccos et Arcsin ne sont pas dérivables en −1 et 1.
• Plus généralement, si f ′(a) = 0, alors f −1 n’est pas dérivable en b.
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3 Théorème de la limite de la dérivée

Théorème 4 : Théorème de la limite de la dérivée
On suppose que :
• f est continue sur [a , b[
• f est dérivable sur ]a , b[

Si : f ′(x) Ð→
x→a+

ℓ (finie ou non), alors : f (x) − f (a)
x − a

Ð→
x→a

ℓ
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3 Théorème de la limite de la dérivée

Théorème 4 : Théorème de la limite de la dérivée
On suppose que :
• f est continue sur [a , b[
• f est dérivable sur ]a , b[

Si : f ′(x) Ð→
x→a+

ℓ (finie ou non), alors : f (x) − f (a)
x − a

Ð→
x→a

ℓ

Même conclusion en b si :
• f est continue sur ]a , b]
• f est dérivable sur ]a , b[
• f ′(x) Ð→

x→b−
ℓ
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3 Théorème de la limite de la dérivée

Théorème 4 : Théorème de la limite de la dérivée
On suppose que :
• f est continue sur [a , b[
• f est dérivable sur ]a , b[

Si : f ′(x) Ð→
x→a+

ℓ (finie ou non), alors : f (x) − f (a)
x − a

Ð→
x→a

ℓ

En un point a intérieur :
• f est continue sur I
• f est dérivable sur I ∖ {a}
• f ′(x) Ð→x→a

x≠a
ℓ
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3 Théorème de la limite de la dérivée

Théorème 4 : Théorème de la limite de la dérivée
On suppose que :
• f est continue sur [a , b[
• f est dérivable sur ]a , b[

Si : f ′(x) Ð→
x→a+

ℓ (finie ou non), alors : f (x) − f (a)
x − a

Ð→
x→a

ℓ

Conséquence
Lorsque ℓ est finie :

f est dérivable en a

et f ′ est continue en a

Exemple 2 : Etudier la dérivabilité en 0 de f
f est la fonction x ↦ Arcsin(1 − x2) définie sur [0 ,

√
2].

12



3 Théorème de la limite de la dérivée

Théorème 4 : Théorème de la limite de la dérivée
On suppose que :
• f est continue sur [a , b[
• f est dérivable sur ]a , b[

Si : f ′(x) Ð→
x→a+

ℓ (finie ou non), alors : f (x) − f (a)
x − a

Ð→
x→a

ℓ

Conséquence
Lorsque ℓ est finie : f est dérivable en a

et f ′ est continue en a

Exemple 2 : Etudier la dérivabilité en 0 de f
f est la fonction x ↦ Arcsin(1 − x2) définie sur [0 ,

√
2].

12



3 Théorème de la limite de la dérivée

Théorème 4 : Théorème de la limite de la dérivée
On suppose que :
• f est continue sur [a , b[
• f est dérivable sur ]a , b[

Si : f ′(x) Ð→
x→a+

ℓ (finie ou non), alors : f (x) − f (a)
x − a

Ð→
x→a

ℓ

Conséquence
Lorsque ℓ est finie : f est dérivable en a et f ′ est continue en a

Exemple 2 : Etudier la dérivabilité en 0 de f
f est la fonction x ↦ Arcsin(1 − x2) définie sur [0 ,

√
2].

12



3 Théorème de la limite de la dérivée

Théorème 4 : Théorème de la limite de la dérivée
On suppose que :
• f est continue sur [a , b[
• f est dérivable sur ]a , b[

Si : f ′(x) Ð→
x→a+

ℓ (finie ou non), alors : f (x) − f (a)
x − a

Ð→
x→a

ℓ

Conséquence
Lorsque ℓ est finie : f est dérivable en a et f ′ est continue en a

Exemple 2 : Etudier la dérivabilité en 0 de f
f est la fonction x ↦ Arcsin(1 − x2) définie sur [0 ,

√
2].

12



3 Théorème de la limite de la dérivée

Théorème 4 : Théorème de la limite de la dérivée
On suppose que :
• f est continue sur [a , b[
• f est dérivable sur ]a , b[

Si : f ′(x) Ð→
x→a+

ℓ (finie ou non), alors : f (x) − f (a)
x − a

Ð→
x→a

ℓ
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III Fonctions de classe Cn

I Dérivée en un point

II Justifier la dérivabilité
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1 Définition

Notation

• Pour n = 0 : f (0) = f
• Pour n ∈ N :

si f est n fois dérivable et si f (n) est dérivable :
f (n+1) =

déf.
(f (n))′

Définition 1
f est dite de classe Cn sur I si :

• f est n fois dérivable sur I
• la fonction f (n) est continue sur I.

Remarque

1. • f est C0 :

f est continue.
• f est de classe C1 :

f est dérivable et f ′ est continue.

2. Si f est deux fois dérivable sur I :

f est de classe C1

3. f est dite de classe C∞ sur I si :

f est de classe Cn pour tout n
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• la fonction f (n) est continue sur I.

Remarque
1. • f est C0 : f est continue.

• f est de classe C1 : f est dérivable et f ′ est continue.
2. Si f est deux fois dérivable sur I : f est de classe C1

3. f est dite de classe C∞ sur I si : f est de classe Cn pour tout n

Exercice 1 : Calculer les dérivées k-ième de
a) f ∶ x ↦ eλx b) sh et ch c) sin et cos d) f ∶ x ↦ xp

équivaut à :
f est indéfiniment dérivable
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1 Définition

Définition 1
f est dite de classe Cn sur I si :
• f est n fois dérivable sur I
• la fonction f (n) est continue sur I.

Remarque
1. • f est C0 : f est continue.

• f est de classe C1 : f est dérivable et f ′ est continue.
2. Si f est deux fois dérivable sur I : f est de classe C1

3. f est dite de classe C∞ sur I si : f est de classe Cn pour tout n

Exercice 2
Pour k ∈ N, calculer la dérivée ke de v ∶ x ↦ 1

1 + x
sur R ∖ {−1}
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2 Opérations sur les fonctions de classe Cn

Théorème 1 : Opérations algébriques version Cn

Soient f , g ∶ I → R, de classe Cn et λ, µ ∈ R.
• Combinaisons linéaires :

λf +µg est de classe Cn sur I et : (λf +µg)(n) = λf (n) +µg(n).

• Produit.

fg est de classe Cn sur I et :

(fg)(n) =
n
∑
k=0
(n
k
)f (k)g(n−k)

• Quotient. Si g ne s’annule pas sur I alors f
g

est de classe Cn sur I.

Exercice 3 : Ex. 3, banque INP

1. Démontrer la formule de Leibniz.
2. Calculer la dérivée ne de f ∶ x ↦ 1 − x

1 + x
sur R ∖ {−1}

v (n)(x) = (−1)nn!
(1 + x)n+1

15
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2 Opérations sur les fonctions de classe Cn

Théorème 2 : Composition version Cn

Si : i) v est de classe Cn sur J
ii) u est de classe Cn sur I, à valeurs dans J

alors v ○ u est de classe Cn sur I

Théorème 3 : Réciproque version Cn

Si : i) f est bijective de I sur J
ii) f est de classe Cn sur I
iii)

f ′ ne s’annule pas sur I

alors f −1 est de classe Cn sur J .

Exemple 1

1. Justifier que f ∶ x ↦ xex est de classe C∞ sur [−1 ,+∞[
2. Justifier que f est une bijection de [−1 ,+∞[ sur [−1

e ,+∞[ et
que f −1 est de classe C∞ sur ]−1

e ,+∞[
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3 Variante C1 du théorème de la limite de la dérivée

SF 5 : Montrer que f se prolonge en une fonction de classe C1

Exemple 2

1. Montrer que f ∶ x ↦ e−
1
x définie sur R∗+ se prolonge en une

fonction de classe C1 sur R+.
2. Montrer que le prolongement par continuité de f est de classe
C∞ sur R+.

17
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➀ f est C1 sur ]0 ,+∞[ :
• composition

➁ f est prolongeable par continuité en 0 :

• lim
x→0

f (x)

➂ f est dérivable en 0 et f ′ y est continue

• théorème de la limite de la dérivée
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fonction de classe C1 sur R+.
2. Montrer que le prolongement par continuité de f est de classe
C∞ sur R+.

➀ f est C1 sur ]0 ,+∞[ :
• composition

➁ f est prolongeable par continuité en 0 :
• lim

x→0
f (x)

➂ f est dérivable en 0 et f ′ y est continue

• théorème de la limite de la dérivée
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