
Limite d’une fonction

Chapitre 13.0



Cadre

• I : intervalle non vide et non réduit à un point

• a ∈ R : point de I ou une de ses extrémités
• f : Df → R

Df = I ou I \ {a}
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1 Limite en un point a est fini

Définition 1
Soit ℓ ∈ R. On dit que f admet ℓ pour limite en a si :

∀ε > 0, ∃α > 0 | ∀x ∈ [a − α , a + α] ∩ Df , |f (x) − ℓ| ≤ ε

Interpretation

Pour tout ε > 0, il existe un voisinage de a sur lequel
f (x) ∈ [ℓ − ε , ℓ + ε]

Voisinage de a
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1 Limite en un point a est fini

Définition 2
Soit ℓ ∈ R. On dit que f admet −∞ pour limite en a si :

∀A ∈ R, ∃α > 0 | ∀x ∈ [a − α , a + α] ∩ Df , f (x) ≤ A

Graphiquement

Cf admet une asymptote verticale en a

Voisinage de a
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2 Limites à l’infini (a = ±∞)

Définition 3
Soit ℓ ∈ R. On dit que f admet ℓ pour limite en +∞ si :

∀ε > 0, ∃A ∈ R | ∀x ∈ [A , +∞[ ∩ Df , |f (x) − ℓ| ≤ ε

Graphiquement

Cf admet une asymptote horizontale d’équation y = ℓ

Voisinage de +∞
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2 Limites à l’infini (a = ±∞)

Définition 4
f admet +∞ pour limite en −∞ si :

∀A ∈ R, ∃B ∈ R, ∀x ∈ Df ∩ ]−∞ , B], f (x) ≥ A.

Exercice 1 : Définir avec des quantificateurs

a) f admet +∞ pour limite en a
b) f admet ℓ pour limite en −∞
c) f admet −∞ pour limite en +∞
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3 Premières propriétés

Théorème 1 : Premières propriétés

1. Si f admet en a une limite alors :

elle est unique.
On note : •

lim
x→a

f (x) = ℓ

•

lim
a

f = ℓ

•

f (x) −→
x→a

ℓ.

2. Si f admet une limite finie en a :

f est bornée au voisinage de a

3. Si f admet en a une limite ℓ > 0 :

f (x) > 0 au voisinage de a

4. Si f (x) −→
x→a

0 et g est bornée au voisinage de a :

f (x)g(x) −→
x→a

0

Vocabulaire
On dit que f vérifie une propriété P :
• Au voisinage de a ∈ R si :

il existe α > 0 tel que f vérifie P sur Df ∩ ]a − α , a + α[.
• Au voisinage de +∞, si :

il existe A ∈ R tel que P est vraie sur Df ∩ ]A , +∞[.

Exemple 1

a) Au voisinage de 0, cos est :

positive

b) Au voisinage de 1/2, x 7→ ⌊x⌋ est :

nulle

Exercice 2
Démontrer le théorème (dans le cas a et ℓ finis) en adaptant les
preuves faites pour les suites.
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I Définitions de la limite
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Cadre

« f est continue en a »

Savoir le justifier
(question)

Savoir l’utiliser
(hypothèse)
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1 Définition de la continuité

Cadre
• a ∈ Df i.e. f est définie en a.

Définition 1

• f est continue en a si :

f (x) −→
x→a

f (a)

• f est continue à gauche (respectivement à droite) si :

f (x) −→
x→a−

f (a)

(resp. f (x) −→
x→a+

f (a))

Exemple 1 : Etudier la continuité de f en 0 Figure

a) f : x 7→
{

x sin
( 1

x
)

si x ̸= 0
0 si x = 0

b) f : x 7→
{

sin
( 1

x
)

si x ̸= 0
0 si x = 0
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1 Définition de la continuité

Théorème 1
On suppose que a est un point intérieur à I.
f est continue en a ssi :

f est continue à gauche et à droite en a

Exemple 2
Soit n ∈ Z. Etudier la continuité à gauche et à droite en n de la
fonction f : x 7→ ⌊x⌋.

i.e. pas une borne
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2 Prolongement par continuité

Cadre
• Df = I \ {a} i.e. f n’est pas définie en a.

Définition 2
f est prolongeable par continuité en a si :

f admet une limite finie ℓ
en a

Vocabulaire. On note f̃ la fonction définie sur I par

∀x ∈ I,

f̃ (x) =
{

f (x) si x ∈ I \ {a}
ℓ si x = a

• Par construction f̃ est :

continue en a

Exemple 3
Montrer que f est prolongeable par continuité en 0
a) f : x 7→ sin x

x b) f : x 7→ x ln x .

Le prolongement par continuité
de f en a
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3 Caractérisation séquentielle de la continuité

Théorème 2 : Intervertion de limite « f (lim un) = lim f (un) »

Soit a ∈ Df . Il y a équivalence entre :
i) f est continue en a

ii) Pour toute suite u ∈ IN telle que lim un = a : f (un) −→
n→+∞

f (a)

13
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Conséquence. Cela justifie le critère « ℓ = f (ℓ) » pour une suite u

vérifiant : ∀n ∈ N, un+1 = f (un) où f est continue en ℓ.

Exercice 1
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2. Soient f , g : R → R, continues sur R.
On suppose que pour tout r ∈ Q : f (r) = g(r).
Montrer que f = g .

13



3 Caractérisation séquentielle de la continuité

Théorème 2 : Intervertion de limite « f (lim un) = lim f (un) »

Soit a ∈ Df . Il y a équivalence entre :
i) f est continue en a
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SF 8 : Equations fonctionnelles et continuité en un point

Exemple 4 : Figure 1 Figure 2

1. Soit x0 ∈ R. On définit la suite u par u0 = x0 et, pour tout n ∈ N,
un+1 = Arctan un. Montrer que u converge et trouver sa limite.

2. Trouver toutes les fonctions h : R → R, continue en 0, telles que
pour tout x ∈ R : h(x) = h(Arctan x).
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3 Caractérisation séquentielle de la continuité

Théorème 2 : Intervertion de limite « f (lim un) = lim f (un) »

Soit a ∈ Df . Il y a équivalence entre :
i) f est continue en a

ii) Pour toute suite u ∈ IN telle que lim un = a : f (un) −→
n→+∞

f (a)

Exemple 5
Montrer que les fonctions f : R → R, continues sur R, vérifiant :

∀x , y ∈ R, f (x + y) = f (x) + f (y)

sont les fonctions linéaires i.e. les fonctions de la forme x 7→ ax où a
décrit R.

13



III Existence et/ou calcul de limites

I Définitions de la limite

II Continuité en un point

III Existence et/ou calcul de limites
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1 Opérations algébriques sur les limites

Résultats analogues à ceux des suites pour les limites de

f + g , f × g ,
f
g

15



2 Composition de limites

Théorème 1 : Fonctions et suites
Pour a, ℓ finis ou non, il y a équivalence entre :
i) f (x) −→

x→a
ℓ

ii) Pour toute suite u ∈ DN
f telle que lim un = a : f (un) −→

n→+∞
ℓ

16
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Pour a, ℓ finis ou non, il y a équivalence entre :
i) f (x) −→

x→a
ℓ

ii) Pour toute suite u ∈ DN
f telle que lim un = a : f (un) −→

n→+∞
ℓ

suite d’éléments de Df
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2 Composition de limites

Théorème 1 : Fonctions et suites
Pour a, ℓ finis ou non, il y a équivalence entre :
i) f (x) −→

x→a
ℓ

ii) Pour toute suite u ∈ DN
f telle que lim un = a : f (un) −→

n→+∞
ℓ

Exemple 1
Etudier les limites lorsque n → +∞ de :
a) e 1

n!

b)
(

1 + a
n

)n
(a ∈ R∗).

suite d’éléments de Df
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2 Composition de limites

Théorème 1 : Fonctions et suites
Pour a, ℓ finis ou non, il y a équivalence entre :
i) f (x) −→

x→a
ℓ

ii) Pour toute suite u ∈ DN
f telle que lim un = a : f (un) −→

n→+∞
ℓ

SF 3 : Montrer que f n’admet pas de limite en a
On peut construire deux suites u, v telles que :
• lim

n→+∞
un = lim

n→+∞
vn = a • lim

n→+∞
f (un) ̸= lim

n→+∞
f (vn)

Exemple 2 :
Montrer que cos n’a pas de limite en +∞. Figure

16

https://www.desmos.com/calculator/i6vfjexuxn


2 Composition de limites

Théorème 1 : Fonctions et suites
Pour a, ℓ finis ou non, il y a équivalence entre :
i) f (x) −→

x→a
ℓ

ii) Pour toute suite u ∈ DN
f telle que lim un = a : f (un) −→

n→+∞
ℓ

SF 3 : Montrer que f n’admet pas de limite en a
On peut construire deux suites u, v telles que :
• lim

n→+∞
un = lim

n→+∞
vn = a • lim

n→+∞
f (un) ̸= lim

n→+∞
f (vn)

Exemple 2 : Bonus – retour sur l’exemple 1b) de la partie II

Montrer que x 7→ sin 1
x n’a pas de limite en 0. Figure
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2 Composition de limites

I f−→ J g−→ R

a 7−→ 7−→

Théorème 2 : Fonctions et fonctions
Soient f : I → R et soit g : J → R. On suppose f à valeurs dans J .

Si : lim
x→a

f (x) = b et lim
y→b

g(y) = ℓ alors : g ◦ f (x) −→
x→a

ℓ
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2 Composition de limites

I f−→ J g−→ R
a 7−→ lim

a
f

7−→

g ◦ f

Théorème 2 : Fonctions et fonctions
Soient f : I → R et soit g : J → R. On suppose f à valeurs dans J .
Si : lim

x→a
f (x) = b et lim

y→b
g(y) = ℓ alors : g ◦ f (x) −→
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2 Composition de limites

I f−→ J g−→ R
a 7−→ b 7−→ lim

b
g

g ◦ f

Théorème 2 : Fonctions et fonctions
Soient f : I → R et soit g : J → R. On suppose f à valeurs dans J .
Si : lim

x→a
f (x) = b et lim

y→b
g(y) = ℓ alors : g ◦ f (x) −→

x→a
ℓ

Exercice 1
Démontrer ce théorème en utilisant les suites.
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2 Composition de limites

I f−→ J g−→ R
a 7−→ b 7−→ ℓ

g ◦ f

Théorème 2 : Fonctions et fonctions
Soient f : I → R et soit g : J → R. On suppose f à valeurs dans J .
Si : lim

x→a
f (x) = b et lim

y→b
g(y) = ℓ alors : g ◦ f (x) −→

x→a
ℓ

Exemple 3
Etudier les limites : a) lim

x→0
e− 1

x2 b) lim
x→1+

ln x × ln(ln x)
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3 Limites et inégalités larges

Théorème 3 : Passages aux limites dans les inégalités larges
Soient ℓ1, ℓ2 ∈ R. Si :

i) f (x) −→
x→a

ℓ1 et g(x) −→
x→a

ℓ2

ii)

Au voisinage de a, f (x) ≤ g(x)

Alors : ℓ1 ≤ ℓ2

Théorème 4 : Limite par encadrement
Soit ℓ ∈ R. Si :

i) Au voisinage de a : f (x) ≤ h(x) ≤ g(x)
ii) lim

a
f (x) = lim

a
g = ℓ.

Alors : h(x) −→
x→a

ℓ.
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4 Théorèmes pour prouver l’existence de limites

Théorème 4 : Limite par encadrement
Soit ℓ ∈ R. Si :
i) Au voisinage de a : f (x) ≤ h(x) ≤ g(x)
ii) lim

a
f = lim

a
g = ℓ.

Alors : h(x) −→
x→a

ℓ.

Théorème 5 : majoration /minoration

On suppose qu’au voisinage de a : f (x) ≤ g(x).

• Si f (x) −→
x→a

+∞ alors : g(x) −→
x→a

+∞.

• Si g(x) −→
x→a

−∞ alors : f (x) −→
x→a

−∞.

Exemple 4
Existence et valeur de la limite en +∞ de x 7→ ex + sin(x ln x).

19



4 Théorèmes pour prouver l’existence de limites

Théorème 4 : Limite par encadrement
Soit ℓ ∈ R. Si :
i) Au voisinage de a : f (x) ≤ h(x) ≤ g(x)
ii) lim

a
f = lim

a
g = ℓ.

Alors : h(x) −→
x→a

ℓ.

Théorème 5 : majoration /minoration

On suppose qu’au voisinage de a : f (x) ≤ g(x).
• Si f (x) −→

x→a
+∞ alors : g(x) −→

x→a
+∞.

• Si g(x) −→
x→a

−∞ alors : f (x) −→
x→a

−∞.

Exemple 4
Existence et valeur de la limite en +∞ de x 7→ ex + sin(x ln x).

19



4 Théorèmes pour prouver l’existence de limites

Théorème 4 : Limite par encadrement
Soit ℓ ∈ R. Si :
i) Au voisinage de a : f (x) ≤ h(x) ≤ g(x)
ii) lim

a
f = lim

a
g = ℓ.

Alors : h(x) −→
x→a

ℓ.

Théorème 5 : majoration /minoration

On suppose qu’au voisinage de a : f (x) ≤ g(x).
• Si f (x) −→

x→a
+∞ alors : g(x) −→

x→a
+∞.

• Si g(x) −→
x→a

−∞ alors : f (x) −→
x→a

−∞.

Exemple 4
Existence et valeur de la limite en +∞ de x 7→ ex + sin(x ln x).

19



4 Théorèmes pour prouver l’existence de limites

Théorème 4 : Limite par encadrement
Soit ℓ ∈ R. Si :
i) Au voisinage de a : f (x) ≤ h(x) ≤ g(x)
ii) lim

a
f = lim

a
g = ℓ.

Alors : h(x) −→
x→a

ℓ.

Théorème 5 : majoration /minoration

On suppose qu’au voisinage de a : f (x) ≤ g(x).
• Si f (x) −→

x→a
+∞ alors : g(x) −→

x→a
+∞.

• Si g(x) −→
x→a

−∞ alors : f (x) −→
x→a

−∞.

Exemple 4
Existence et valeur de la limite en +∞ de x 7→ ex + sin(x ln x).

19



4 Théorèmes pour prouver l’existence de limites

Théorème 6 : Théorème de la limite monotone
On suppose que f est croissante sur ]a , b[ :

Limite en b−

• Si f est majorée, alors f a
une limite finie en b−

• Sinon : f (x) −→
x→b

+∞

Limite en a+

• Si f est minorée, alors f a
une limite finie en a+

• Sinon : f (x) −→
x→a

−∞

20
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une limite finie en a+

• Sinon : f (x) −→
x→a
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Conséquence
En c ∈ ]a , b[, f a des demi-limites finies et : lim

c−
f ≤ f (c) ≤ lim

c+
f

Exemple 5
Montrer que si f convexe sur ]a , b[ alors f est continue en c ∈ ]a , b[

Le théorème s’applique
à g = f|]a ,c[ ou g = f|]c ,b[
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• Si f est minorée, alors f a
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• Sinon : f (x) −→
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Exemple 6

Montrer que F : x 7→
∫ x

1
e−t2 dt possède une limite finie en +∞.
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4 Théorèmes pour prouver l’existence de limites

Théorème 6 : Théorème de la limite monotone
On suppose que f est croissante sur ]a , b[ :

Limite en b−

• Si f est majorée, alors f a
une limite finie en b−

• Sinon : f (x) −→
x→b

+∞

Limite en a+

• Si f est minorée, alors f a
une limite finie en a+

• Sinon : f (x) −→
x→a

−∞

Exercice 2 : Bonus
Montrer l’existence d’une limite finie en b− dans le cas d’une
fonction majorée.
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