Limite d’une fonction

Chapitre 13.0



= [ :intervalle non vide et non réduit a un point



= [ :intervalle non vide et non réduit a un point

= ac R : point de / ou une de ses extrémités



= [ :intervalle non vide et non réduit a un point
= ac R : point de / ou une de ses extrémités
LI A 9{ — R



= [ :intervalle non vide et non réduit a un point
= ac R : point de / ou une de ses extrémités
LI A 9{ — R

\

(2 =1 ou 1\ {a}]




[l Définitions de la limite

I Définitions de la limite



1 Limite en un point a est fini

Soit £ € R. On dit que f admet ¢ pour limite en a si :



1 Limite en un point a est fini

Soit £ € R. On dit que f admet ¢ pour limite en a si :

Ve > 0,



1 Limite en un point a est fini

Soit £ € R. On dit que f admet ¢ pour limite en a si :

Ve >0, f(x) — €| < e



1 Limite en un point a est fini

Soit £ € R. On dit que f admet ¢ pour limite en a si :

Ve >0, Ja>0 | |f(x) =4 <e



1 Limite en un point a est fini

Soit £ € R. On dit que f admet ¢ pour limite en a si :

Ve>0, Ja>0]| Vxe€ [a—a,a+a]NPr, |f(x)—/{ <e



1 Limite en un point a est fini

Définition 1

Soit £ € R. On dit que f admet ¢ pour limite en a si :

Ve>0, Ja>0]| Vxe€ [a—a,a+a]NPr, |f(x)—/{ <e

Interpretation



1 Limite en un point a est fini

Définition 1

Soit £ € R. On dit que f admet ¢ pour limite en a si :

Ve>0, Ja>0]| Vxe€ [a—a,a+a]NPr, |f(x)—/{ <e

Interpretation

Pour tout € > 0,



1 Limite en un point a est fini

Définition 1

Soit £ € R. On dit que f admet ¢ pour limite en a si :

Ve>0, dJa>0| Vxe [a—a,a+a]NZr, |f(x)—{ <¢

Pour tout € > 0, il existe un voisinage de a

Interpretation



1 Limite en un point a est fini

Définition 1

Soit £ € R. On dit que f admet ¢ pour limite en a si :
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1 Limite en un point a est fini

Définition 2
Soit £ € R. On dit que f admet —oc pour limite en a si :

VAER, Ja>0]| Vxe [a—a,a+a]lN%r, f(x)<A

6r admet une asymptote verticale en a

Graphiquement
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Définition 3
Soit £ € R. On dit que f admet ¢ pour limite en +o00 si :

Ve>0, JAcR | Vxe [A,4o0[N%r, |f(x)—¥¢ <e

i

[Voisinage de +oo)

Graphiquement

%6r admet une asymptote horizontale d'équation y =/
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f admet +oo pour limite en —oco si :

VAER, 3BER, Vx€ Zn]-o0,B], f(x)>A

Exercice 1 : Définir avec des quantificateurs

c) f admet —oo pour limite en +o00
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On dit que f vérifie une propriété P :
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a) Au voisinage de 0, cos est : positive
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3 Premiéres propriétés

Vocabulaire
On dit que f vérifie une propriété P :
= Au voisinage de a € R si :
il existe « > 0 tel que f vérifie P sur ZrN]a—a,a+ af.
= Au voisinage de +o0, si :
il existe A € R tel que P est vraie sur Z¢ N]A, +ool.

Exemple 1

a) Au voisinage de 0, cos est : positive

b) Au voisinage de 1/2, x — |x] est : nulle

Exercice 2

Démontrer le théoréme (dans le cas a et ¢ finis) en adaptant les
preuves faites pour les suites.
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1 Définition de la continuité

Cadre

m 3€ Yy ie f est définie en a.

Exemple 1 : Etudier la continuité de f en 0 G
a)f:x%{gsm(i) six #0 b)f:xH{Zin(i) six #0

six=0 six=0
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1 Définition de la continuité

Cadre

m 3€ Yy ie f est définie en a.

= f est continueen asi: f(x)— f(a)
X—a

» f est continue a gauche (respectivement a droite) si :
f(x) — f(a) (resp. f(x) — f(a))
X—a

X—a

10
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1 Définition de la continuité

Cadre

m 3€ Yy ie f est définie en a.

Définition 1
= f est continueen asi: f(x)— f(a)
X—a
» f est continue a gauche (respectivement a droite) si :
f(x) — f(a) (resp. f(x) — f(a))
X—»a~ x—at

Exemple 1 : Etudier la continuité de f en 0 G
a)f:x»—>{35in()1<) six #0 b)f:xH{Bin(i) six #0

six=20 six=0

10
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1 Définition de la continuité

On suppose que a est un point intérieur a /.
f est continue en a ssi :
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1 Définition de la continuité

(i.e. pas une borne)

On suppose que a est un point intérieur a /.
f est continue en a ssi : f est continue a gauche et a droite en a

Exemple 2

Soit n € Z. Etudier la continuité a gauche et a droite en n de la
fonction f : x — |x].

11
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2 Prolongement par continuité

Définition 2
f est prolongeable par continuité en a si : f admet une limite finie ¢
en a

Vocabulaire. On note f la fonction définie sur / par

Vx e I, ‘
/¢ six—=a

Flx) = {f(x) six €1\ {a}

= Par construction f est : continue en a
A

Le prolongement par continuité
de f en a
Montrer que f est prolongeable par continuité en 0

a) f:Xb—>SInX

Exemple 3

b) f:x~— xlInx.



3 Caractérisation séquentielle de la continuité

Théoréme 2 : Intervertion de limite « f(lim u,) = lim f(u,) »

Soit a € Zr. Il y a équivalence entre :

i) f est continue en a
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Théoréme 2 : Intervertion de limite « f(lim u,) = lim f(u,) »

Soit a € Zr. Il y a équivalence entre :

i) f est continue en a
ii) Pour toute suite u € IN telle que limu, =a: f(u,) — f(a)
A n—+00
(suite d’éléments de /)
Conséquence. Cela justifie le critere « £ = f(£) » pour une suite u

vérifiant:  Vn €N, upy1 = f(u,) ou f est continue en /.
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3 Caractérisation séquentielle de la continuité

Théoréme 2 : Intervertion de limite « f(lim u,) = lim f(u,) »

Soit a € Zr. Il y a équivalence entre :

i) f est continue en a

ii) Pour toute suite u € /" telle que limu, =a: f(u,) — f(a)
n—-+00

Conséquence. Cela justifie le critéere « £ = f(£) » pour une suite u

vérifiant:  Vn €N, upy1 = f(u,) ou f est continue en /.
N
Unpp —> £ [f(u,,) — f(f)}

n——+-00 n——+-00
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3 Caractérisation séquentielle de la continuité

Théoréme 2 : Intervertion de limite « f(lim u,) = lim f(u,) »

Soit a € Zr. Il y a équivalence entre :

i) f est continue en a

ii) Pour toute suite u € /N telle que limu, =a: f(u,) — f(a)
n——+o00

Conséquence. Cela justifie le critére « £ = f(£) » pour une suite u

vérifiant:  Vn €N, upy1 = f(u,) ou f est continue en /.

Exercice 1

1. Démontrer I'équivalence : i) <= ii)
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3 Caractérisation séquentielle de la continuité

Théoréme 2 : Intervertion de limite « f(lim u,) = lim f(u,) »

Soit a € Zr. Il y a équivalence entre :
i) f est continue en a

ii) Pour toute suite u € /N telle que limu, =a: f(u,) — f(a)
n——4o00

Conséquence. Cela justifie le critére « £ = f(£) » pour une suite u

vérifiant:  Vn €N, upy1 = f(u,) ou f est continue en /.

Exercice 1

2. Soient f, g : R — R, continues sur R.
On suppose que pour tout r € Q :  f(r) = g(r).
Montrer que f = g.

13



3 Caractérisation séquentielle de la continuité

Théoréme 2 : Intervertion de limite « f(lim u,) = lim f(u,) »

Soit a € Zr. Il y a équivalence entre :

i) f est continue en a

ii) Pour toute suite u € /N telle que limu, =a: f(u,) — f(a)
n——4o00

SF 8 : Equations fonctionnelles et continuité en un point

Exemple 4 : [+ Figure 2 ]

1. Soit xp € R. On définit la suite u par ug = xg et, pour tout n € N,
Upt+1 = Arctan u,. Montrer que u converge et trouver sa limite.

2. Trouver toutes les fonctions h : R — R, continue en 0, telles que
pour tout x € R : h(x) = h(Arctan x).

13
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3 Caractérisation séquentielle de la continuité

Théoréme 2 : Intervertion de limite « f(lim u,) = lim f(u,) »

Soit a € Zr. Il y a équivalence entre :

i) f est continue en a

ii) Pour toute suite u € /N telle que limu, =a: f(u,) — f(a)
n——4o00

Exemple 5

Montrer que les fonctions 7 : R — R, continues sur R, vérifiant :
Vx,y €R, f(x +y) = f(x)+f(y)
sont les fonctions linéaires i.e. les fonctions de la forme x — ax ou a

décrit R.

13



I Existence et/ou calcul de limites

I Existence et/ou calcul de limites
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1 Opérations algébriques sur les limites

Résultats analogues a ceux des suites pour les limites de

£
f+g7 fXg, —
g

115)



2 Composition de limites

Théoreme 1 : Fonctions et suites

Pour a, £ finis ou non, il y a équivalence entre :

i) F(x) — £



2 Composition de limites

Théoreme 1 : Fonctions et suites

Pour a, £ finis ou non, il y a équivalence entre :

i) F(x) — £

i) Pour toute suite u € 2} telle que limu, =a:  f(u,) » £
n——+00



2 Composition de limites

Théoreme 1 : Fonctions et suites

Pour a, £ finis ou non, il y a équivalence entre :

i) F(x) = £

i) Pour toute suite u € 22X telle que limu, =a: f(u,) — ¥

+o0o
N\ .

(suite d’'éléments de .@f)




2 Composition de limites

Théoreme 1 : Fonctions et suites

Pour a, £ finis ou non, il y a équivalence entre :

i) F(x) = £

i) Pour toute suite u € 77 telle que limu, =a:  f(u,) — ¢
n——+00

Exemple 1 [suite d'éléments de 9,:)

Etudier les limites lorsque n — —+oo de :
1
a) en

b)(1+z>" (a € R*).



2 Composition de limites

Théoréme 1 : Fonctions et suites

Pour a, ¢ finis ou non, il y a équivalence entre :
i) f(x) —¢
) ) =

i) Pour toute suite u € 2} telle que limu, =a: f(u,) — /

SF 3 : Montrer que f n’admet pas de limite en a

On peut construire deux suites u, v telles que :

= |lim u,= |lim v,=a = |lim f(u lim f(v
n——-00 n n—+-00 n n——-00 ( n) 7& n—+00 ( n)
Exemple 2 :

Montrer que cos n'a pas de limite en +oo.

16


https://www.desmos.com/calculator/i6vfjexuxn

2 Composition de limites

Théoréme 1 : Fonctions et suites

Pour a, ¢ finis ou non, il y a équivalence entre :

i) F(x) = £

i) Pour toute suite u € 22X telle que limu, =a: f(up) = 14
n——+00

SF 3 : Montrer que f n’admet pas de limite en a
On peut construire deux suites u, v telles que :

" o= A =l fln) I fn)

Exemple 2 : Bonus — retour sur I’exemple 1b) de la partie Il

1 -
Montrer que x — sin — n'a pas de limite en 0.
X


https://www.desmos.com/calculator/vozdmuc81r

2 Composition de limites

Théoreme 2 : Fonctions et fonctions

Soient f : | — R et soit g: J — R. On suppose f a valeurs dans J.

17



2 Composition de limites

Théoreme 2 : Fonctions et fonctions

Soient f : | — R et soit g: J — R. On suppose f a valeurs dans J.
Si: limf(x)=b et limg(y)=4¢ alors: gof(x)—1¢
xX—a y—b xX—a
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2 Composition de limites

gof

Théoreme 2 : Fonctions et fonctions

Soient f : | — R et soit g: J — R. On suppose f a valeurs dans J.
Si: limf(x)=b et Iimbg(y) =/( alors: gof(x)—¢
y—r

X—a X—a

17



2 Composition de limites

gof

105 R
ar—>br—>|i21g

Théoréme 2 : Fonctions et fonctions

Soient f : | — R et soit g : J — R. On suppose f a valeurs dans J.
Si: limf(x)=b et limg(y)=¢ alors: gof(x)—¢
y—b X—a

X—ra

Exercice 1

Démontrer ce théoreme en utilisant les suites.
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2 Composition de limites

gof

| 58 R
ar——b— /¢

Théoreme 2 : Fonctions et fonctions

Soient f : | — R et soit g: J — R. On suppose f a valeurs dans J.

Si : l@af(x) =pH et yllnbg(y) =/{ alors: gof(x) ;ig
Exemple 3

1 .
Etudier les limites : a) lime ¥ b) lim Inx X In(Inx)
x—0 x—1+

17



3 Limites et inégalités larges

Théoreme 3 : Passages aux limites dans les inégalités larges
Soient /1,4, € R. Si :

i)
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3 Limites et inégalités larges

Théoreme 3 : Passages aux limites dans les inégalités larges
Soient /1,4, € R. Si :
i) f(x) = /1 et g(x) )::fg

i)
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3 Limites et inégalités larges

Théoreme 3 : Passages aux limites dans les inégalités larges
Soient /1,4, € R. Si :

i) f(x) = /1 et g(x) )::fg

i) f(x) < g(x)
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3 Limites et inégalités larges

Théoreme 3 : Passages aux limites dans les inégalités larges

Soient /1,4, € R. Si :
|) f(X) ):Zg]_ et g(X) )::EQ

i) Au voisinage de a, f(x) < g(x)
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3 Limites et inégalités larges

Théoreme 3 : Passages aux limites dans les inégalités larges

Soient /1,4, € R. Si :
|) f(X) ):Zg]_ et g(X) )::EQ

i) Au voisinage de a, f(x) < g(x)
Alors : fl < €2
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3 Limites et inégalités larges

Théoreme 3 : Passages aux limites dans les inégalités larges
Soient /1,4, € R. Si :

i) f(x) = /1 et g(x) )::Eg

i) Au voisinage de a, f(x) < g(x)

Alors : fl < €2

Théoreme 4 : Limite par encadrement

Soit £ € R. Si :
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3 Limites et inégalités larges

Théoreme 3 : Passages aux limites dans les inégalités larges
Soient /1,4, € R. Si :

I) f(X) ):Zfl et g(X) ):;EQ

i) Au voisinage de a, f(x) < g(x)
Alors : fl < €2

Théoreme 4 : Limite par encadrement
Soit £ € R. Si :

i) Au voisinage de a:  f(x) < h(x) < g(x)
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3 Limites et inégalités larges

Théoreme 3 : Passages aux limites dans les inégalités larges
Soient /1,4, € R. Si :

I) f(X) ):Zfl et g(X) ):;EQ

i) Au voisinage de a, f(x) < g(x)
Alors : fl < €2

Théoreme 4 : Limite par encadrement

Soit £ € R. Si :

i) Au voisinage de a:  f(x) < h(x) < g(x)
i) lim f(x)= limg = ¢.
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3 Limites et inégalités larges

Théoreme 3 : Passages aux limites dans les inégalités larges
Soient /1,4, € R. Si :

I) f(X) ):Zfl et g(X) ):;EQ

i) Au voisinage de a, f(x) < g(x)
Alors : fl < €2

Théoreme 4 : Limite par encadrement

Soit £ € R. Si :

i) Au voisinage de a:  f(x) < h(x) < g(x)
i) lim f(x)= limg = ¢.
Alors :  h(x) — (.

X—ra

18



4 Théorémes pour prouver I'existence de limites

Théoreme 4 : Limite par encadrement

Soit £ € R. Si :
i) Au voisinage de a: f(x) < h(x) < g(x)
i) Iign f= Iigng = /.

Alors :  h(x) — £.
X—a

Théoréme 5 : majoration /minoration

On suppose qu’au voisinage de a:  f(x) < g(x).

19



4 Théorémes pour prouver I'existence de limites

Théoreme 4 : Limite par encadrement

Soit £ € R. Si :

i) Au voisinage de a: f(x) < h(x) < g(x)
i) Iign f= Iigng = /.

Alors :  h(x) — £.

X—a

Théoréme 5 : majoration /minoration

On suppose qu’au voisinage de a:  f(x) < g(x).

= Si f(x) 3 too  alors g(x) = oo
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4 Théorémes pour prouver I'existence de limites

Théoreme 4 : Limite par encadrement

Soit £ € R. Si :

i) Au voisinage de a: f(x) < h(x) < g(x)
i) Iign f= Iigng = /.

Alors :  h(x) — £.

X—a

Théoréme 5 : majoration /minoration

On suppose qu’au voisinage de a:  f(x) < g(x).

= Si f(x) 3 too  alors g(x) = oo

= Sig(x) 3 —o0  alors: f(x) =~
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4 Théorémes pour prouver I'existence de limites

Théoreme 4 : Limite par encadrement

Soit £ € R. Si :

i) Au voisinage de a: f(x) < h(x) < g(x)
i) Iign f= Iigng = /.

Alors :  h(x) — £.

X—a

Théoréme 5 : majoration /minoration

On suppose qu’au voisinage de a:  f(x) < g(x).

= Si f(x) 3 too  alors g(x) = oo

= Sig(x) 3 —o0  alors: f(x) =~

Exemple 4

Existence et valeur de la limite en +o00 de x — € + sin(x In x).
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4 Théorémes pour prouver I'existence de limites

Théoréme 6 : Théoréme de la limite monotone

On suppose que f est croissante sur |a, b] :

Limite en b~
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4 Théorémes pour prouver I'existence de limites

Théoréme 6 : Théoréme de la limite monotone

On suppose que f est croissante sur |a, b] :

Limite en b~

= Si f est majorée, alors f a
une limite finie en b~
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4 Théorémes pour prouver I'existence de limites

Théoreme 6 : Théoreme de la limite monotone
On suppose que f est croissante sur |a, b] :
Limite en b~

= Si f est majorée, alors f a
une limite finie en b~

= Sinon: f(x) — +o0
x—b

20



4 Théorémes pour prouver I'existence de limites

Théoréme 6 : Théoréme de la limite monotone
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Limite en b~ Limite en a*

= Si f est majorée, alors f a
une limite finie en b~

= Sinon:  f(x) — +o0
x—b
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4 Théorémes pour prouver I'existence de limites

Théoréme 6 : Théoréme de la limite monotone

On suppose que f est croissante sur |a, b] :

Limite en b~ Limite en a*

= Si f est majorée, alors f a .

Si f est minorée, alors f a
une limite finie en b~

une limite finie en a™
= Sinon:  f(x) — +o0

Sinon:  f(x) — —o0
x—b X—a
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4 Théorémes pour prouver I'existence de limites

Théoréme 6 : Théoréme de la limite monotone

On suppose que f est croissante sur |a, b] :

Limite en b~ Limite en a*

= Si f est majorée, alors f a .

Si f est minorée, alors f a
une limite finie en b~

une limite finie en a™
= Sinon:  f(x) — +o0

Sinon:  f(x) — —o0
x—b X—a
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4 Théorémes pour prouver I'existence de limites

Théoréme 6 : Théoréme de la limite monotone

On suppose que f est croissante sur |a, b] :

Limite en b~ Limite en a*
= Si f est majorée, alors f a = Si f est minorée, alors f a
une limite finie en b~ une limite finie en a™
= Sinon: f(x) — +o0 » Sinon: f(x) — —
x—b X—a
Conséquence

En c € ]a, b[, f a des demi-limites finies et : |limf< f(c) < lim f
- C

C
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4 Théorémes pour prouver I'existence de limites

Théoréme 6 : Théoréme de la limite monotone

On suppose que f est croissante sur |a, b] :

Limite en b~ Limite en a*
= Si f est majorée, alors f a = Si f est minorée, alors f a
une limite finie en b~ une limite finie en a™
= Sinon: f(x) — +o0 » Sinon: f(x) — —
x—b X—a

Le théoreme s'applique
Conséquence a g =fla,coug="fcp

En c € ]a, b[, f a des demi-limites finies et : Mimf< f(c) < lim f
c— C
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4 Théorémes pour prouver I'existence de limites

Théoréme 6 : Théoréme de la limite monotone

On suppose que f est croissante sur |a, b] :

Limite en b~ Limite en a*
= Si f est majorée, alors f a = Si f est minorée, alors f a
une limite finie en b~ une limite finie en a™
= Sinon: f(x) — +o0 » Sinon: f(x) — —
x—b X—a

Le théoreme s'applique
Conséquence a g =fla,coug="fcp

En c € ]a, b[, f a des demi-limites finies et : Mimf< f(c) < lim f
c— C

Exemple 5

Montrer que si f convexe sur |a, b[ alors f est continue en ¢ € |a, b]
20



4 Théorémes pour prouver I'existence de limites

Théoréme 6 : Théoréme de la limite monotone

On suppose que f est croissante sur |a, b] :

Limite en b~ Limite en a*
= Si f est majorée, alors f a = Si f est minorée, alors f a
une limite finie en b~ une limite finie en a™
= Sinon: f(x) — +o0 » Sinon: f(x) — —
x—b xX—a
Exemple 6

X
2 a o
Montrer que F : x — / e ' dt posséde une limite finie en +o0.
1
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4 Théorémes pour prouver I'existence de limites

Théoréme 6 : Théoréme de la limite monotone

On suppose que f est croissante sur |a, b] :

Limite en b~ Limite en a*
= Si f est majorée, alors f a = Si f est minorée, alors f a
une limite finie en b~ une limite finie en a™
= Sinon: f(x) — +o0 » Sinon: f(x) — —
x—b X—a

Exercice 2 : Bonus

Montrer |'existence d'une limite finie en b~ dans le cas d'une
fonction majorée.
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