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Racine énieme d’un complexe Z

Définition 1
Soit Z € C*.
On appelle racine n-iéme de Z tout : z € C tel que z" = Z.

Exemple 1

Montrer que
a) 1+ i est une racine carrée de 2/
1

3
b) ) 2l i7 est une racine cubique de I'unité
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2ikm

we=¢€n, pour k € [0,n—1]

Notation

L’ensemble des racines n-iemes de |'unité est noté U,,.



1 Racines n-iémes de l'unité

Théoréme 1

Il'y a exactement n racines n-iemes de |'unité, ce sont les complexes

2ikm

we=¢€n, pour k € [0,n—1]

Notation

L’ensemble des racines n-iemes de |'unité est noté U,,.

Exercice 1 : Ex. 84.2, banque INP

Démontrer le théoreme en cherchant tous les z € C tels que z" = 1.
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1 Racines n-iémes de l'unité

1. Les racines n-iemes de |'unité sont des puissances de wj :

Vke[0,n—1], wx=wf
2. Pour n > 2, la somme des racines n-iemes de |'unité est nulle :

n—1
Z Wk = 0
k=0

Exercice 2

Démontrer le théoréme.
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2im
s Uz = {1,63,e3

IU4:
k =
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Petites valeurs de n

» Uy ={1,-1}




1 Racines n-iémes de l'unité

Petites valeurs de n

= U2 ={1,-1}

n Uz = {1,62%,6%}: {1,e2%,672%}
» Uy ={1,-1,i,—i}
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1 Racines n-i

Définition 2
On pose j = e’ . Les racines 3¢ de I'unité sont : 1, j et j?
Relations a retenir :
» 3=1

. 1 e
u 12 = - = j

J

s 14+4+42=0
» VzeC, 24z+1=(z-j)(z-7)

Exemple 2

—_
_l’_
.

Simplifier le complexe Z =

—_
+
—



1 Racines n-i

Définition 2

On pose j = e’s . Les racines 3¢ de I'unité sont : 1, j et j
Relations a retenir :
» 3=1
- P==7
J
= 1+j+2=0

= VzeC, Z2+z+1=(z—j)z—7)

Exemple 4 : Ex. 84.3, banque INP

Soit n € N*.
Résoudre I'équation :  (z+ )" = (z—1i)" d'inconnue z € C.
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2 Racines n-iemes d’'un complexe Z non nul

Le complexe Z = re'? posséde exactement n racines n-iemes, ce
sont les complexes :

+ 2/k7r

zc=rnen : pour k € [0,n —1].

Exercice 3

: - - 10
Démontrer le théoreme en commencant par vérifier que zg = rn €'n

convient.



2 Racines n-iemes d’'un complexe Z non nul

Le complexe Z = re'? posséde exactement n racines n-iemes, ce
sont les complexes :

+ 2/I<7r

zc=rnen : pour k € [0,n —1].

Exemple 5

Déterminer les racines cubiques de : Z =2 + 2j.



2 Racines n-iemes d’'un complexe Z non nul

Le complexe Z = re'? posséde exactement n racines n-iemes, ce
sont les complexes :

+ 2/I<7r

zc=rnen : pour k € [0,n —1].

Exemple 6

Calculer sous forme algébrique les racines carrées de :
a) Z=2i
b) Z=3-4j
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Cadre
= On donne Z € C*

= On cherche les deux racines carrées de / .
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1 Calcul des racines carrées sous forme algébrique

Cadre
= On donne Z € C*

= On cherche les deux racines carrées de / .

SF 14 : calculer une racine carrée 6 d’'un complexe Z

Exemple 1

Calculer les racines carrées de 3 — 4.



2 Equation du second degré a coefficients complexes

Cadre
On souhaite résoudre dans C I'équation (E) :  az> + bz +c =0
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2 Equation du second degré a coefficients compl

Cadre
On souhaite résoudre dans C I'équation (E) :  az> + bz +c =0

Théoreme 1

b
= Si A =0, (E) a une solution unique : | zp = .
a

10



2 Equation du second degré a coefficients compl

Cadre

On souhaite résoudre dans C I'équation (E) :  az> + bz +c =0
Théoréme 1

= Si A =0, (E) a une solution unique : | zp = —%

= Si A #0, (E) a deux solutions distinctes :

10



2 Equation du second degré a coefficients compl

Cadre
On souhaite résoudre dans C I'équation (E) :  az> + bz +c =0

Théoréme 1

b
= Si A =0, (E) a une solution unique : | zp = ~%
a
= Si A #0, (E) a deux solutions distinctes :
—b+46 ; —b—4
Z1 — e 7y =
! 2a ° 2a

ou ¢ est une racine carrée de A.

10



2 Equation du second degré a coefficients compl

Cadre
On souhaite résoudre dans C I'équation (E) :  az> + bz +c =0
Théoreme 1
: . . b
= Si A =0, (E) a une solution unique : | zp = ~%
a
= Si A #0, (E) a deux solutions distinctes :
—b+ 0 ; —b—4
7 = e z =
! 2a ° 2a

ol 0 est une racine carrée de A.

10



2 Equation du second degré a coefficients compl

Cadre
On souhaite résoudre dans C I'équation (E) :  az> + bz +c =0

Théoreme 1

b
= Si A =0, (E) a une solution unique : | zp = ~%
a
= Si A #0, (E) a deux solutions distinctes :
—b+ 0 ; —b—4
Z1 — e 7y =
! 2a ° 2a

ou ¢ est une racine carrée de A.

Exercice 1

Démontrer le théoreme.
10



2 Equation du second degré a coefficients compl

Cadre
On souhaite résoudre dans C I'équation (E) :  az> + bz +c =0
Théoréme 1
: . . b
= Si A =0, (E) a une solution unique : | zp = ~%
a
= Si A #0, (E) a deux solutions distinctes :
—b+ 0 ; —b—4
Z1 — e 7y =
! 2a ° 2a

ou ¢ est une racine carrée de A.

Exemple 2

Résoudre I'équation : z2 — (3+i)z+2+i=0 d'inconnue z € C
10



2 Equation du second degré a coefficients complexes

Cas particulier ou le discriminant est réel

—b+ VA —b—+VA
2a 2a

= siA>0: 7
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2 Equation du second degré a coefficients complexes

[On prend : § = \/E]

Cas particulier ou le discriminant est/éel

_-b+va 7 —b—ﬂ]

= siA>0: 7 Z

2a 2a

11



2 Equation du second degré a coefficients complexes

[On prend : § = \/E]

Cas particulier ou le discriminant est/éel

_—b+VA t/ —b—\/Z]

= siA>0: [21

2a o2 2a
—b+iv/—A —b—iv/—A
= sSiA<O: [zl—Jrzla et 22—213]
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2 Equation du second degré a coefficients complexes

[On prend : § = \/E]

Cas particulier ou le discriminant est/éel

_—b+VA t/ —b—\/Z]

= siA>0: [21

2a o2 2a
—b+iv/—A —b—iv/—A
= sSiA<O: [zl—Jrl et 22_/]
2a \ 2a

\

[On prend : 0 = /\/j)

11
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3 Somme et produit des racines

Remarque

. L g b c
Les deux racines de (E) vérifient : = 23+ 20 = —— = z12p = —
a a

Théoréme 2

. . z1t+2z2=s5s .
Soit s, p € C. Les solutions de sont : les racines de
Z12 = p

2

I'équation z©= — sz + p = 0.



3 Somme et produit des racines

Remarque

o
(9]

Les deux racines de (E) vérifient : = 23+ 20 = —— = z12p = —
a a

Théoréme 2

. . z1t+2z2=s5s .
Soit s, p € C. Les solutions de sont : les racines de
Z12 = p

2

I'équation z©= — sz + p = 0.

Exercice 2

Démontrer le théoréme.



3 Somme et produit des racines

Remarque

. L g b c
Les deux racines de (E) vérifient : = 23+ 20 = —— = z12p = —
a a

Théoréme 2

. . z1t+2z2=s5s .
Soit s, p € C. Les solutions de sont : les racines de
Z12 = p
2

I'équation z©= — sz + p = 0.

SF 16 : Résoudre un systeme « somme-produit »

Exemple 3

z1+20=06i

Résoudre le systéme d'inconnue (z1, z) € C? :
Z12p — —13



3 Somme et produit des racines

Remarque

. L g b c
Les deux racines de (E) vérifient : = 23+ 20 = —— = z12p = —
a a

. . z1t+2z2=s5s .
Soit s, p € C. Les solutions de sont : les racines de
Z12 = p
I'équation z> — sz + p = 0.
Exemple 4

Soit a € C et 0 € R. Résoudre les équations d'inconnue z € C :
a) z2 —2zcosf+1=0

b) 22— (1+a+a%)z+a(l+a%)=0



4 Factorisation des polynomes : deux petits résultats

Cadre

= P est la fonction polynomiale :  z+ ag+ a1z + -+ anz”
» o€ Cestuneracinede P: P(a)=0
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4 Factorisation des polynomes : deux petits résultats

Cadre

= P est la fonction polynomiale :  z+ ag+ a1z + -+ anz”
» o€ Cestuneracinede P: P(a)=0

Théoreme 3

Il existe une fonction polynomiale @ telle que pour tout z € C :

P(z) =(z — a)Q(2)

Exercice 3

Démontrer le théoréeme
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4 Factorisation des polynomes : deux petits résultats

Cadre

= P est la fonction polynomiale :  z+ ag+ a1z + -+ anz”
» o€ Cestuneracinede P: P(a)=0

Théoreme 3

Il existe une fonction polynomiale @ telle que pour tout z € C :

P(z) =(z — a)Q(2)

Exercice 4

On suppose que les aj sont tous réels. Montrer que @ est aussi une
racine de P.

13



4 Factorisation des polynomes : deux petits résultats

Cadre

= P est la fonction polynomiale :  z+ ag+ a1z + -+ anz”
» o€ Cestuneracinede P: P(a)=0

Théoreme 3

Il existe une fonction polynomiale @ telle que pour tout z € C :

P(z) = (z - a)Q(2)

Exemple 5
Montrer que P : z+— (1 + z)" — z" — 1 est divisible par z2 + z + 1.

13
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I Interprétation géométrique des complexes

14



1 Orthogonalité, alignement

b
a

Théoréme 1 : Interprétation géométrique de Z—
Soient A, B, M d’affixes a, b, z tels que M ¢ {A, B} :
z—b z— b) _

Z— a

= = arg(
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1 Orthogonalité, alignement

b
a

Théoréme 1 : Interprétation géométrique de Z—
Soient A, B, M d’affixes a, b, z tels que M ¢ {A, B} :
z—b| _MB z— b) _
z—al MA z—a'
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1 Orthogonalité, alignement

b
a

Théoréme 1 : Interprétation géométrique de Z—

Soient A, B, M d’affixes a, b, z tels que M §é {A,B} :

z—b MB
> = WA . arg(z /\/IA ?) [27].

115



1 Orthogonalité, alignement

z—b

Théoreme 1 : Interprétation géométrique de =2
z—a

Soient A, B, M d’affixes a, b, z tels que M ¢ {A, B} :
_ MB _
Z=bl_ . arg(%) = (MA, MB) [2x].
Z [R—

z—al MA

i) | A, B et M sont alignés ssi :

i) | (MA) et (MB) sont perpendiculaires ssi :
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1 Orthogonalité, alignement

z—b

Théoreme 1 : Interprétation géométrique de =2
z—a

Soient A, B, M d’affixes a, b, z tels que M ¢ {A, B} :

z—>b MB z—b —
225 P = arg(2=2) = (WA, MB) [2n].

z—b

Z—a

i) | A, B et M sont alignés ssi : eR

i) | (MA) et (MB) sont perpendiculaires ssi :

115



1 Orthogonalité, alignement

z—b

Théoreme 1 : Interprétation géométrique de =2
z—a

Soient A, B, M d’affixes a, b, z tels que M ¢ {A, B} :

z—>b MB z—b —
225 P = arg(2=2) = (WA, MB) [2n].

z—b

Z—a

i) | A, B et M sont alignés ssi : eR

i) | (MA) et (MB) sont perpendiculaires ssi .z

€ iR
z—a |

115



1 Orthogonalité, alignement

Théoréme 1 : Interprétation géométrique de Z— ta’

Soient A, B, M d’affixes a, b, z tels que M §é {A,B} :

z—b MB
=5~ wm " arg(z (MA, MB) o).
: L —b
i) | A, B et M sont alignés ssi : S € R
Z —_—
.. L o z—b |
i) | (MA) et (MB) sont perpendiculaires ssi 5 € iR

Exercice 1

Démontrer le théoreme.
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1 Orthogonalité, alignement

z—b
z—a

Théoreme 1 : Interprétation géométrique de

Soient A, B, M d’affixes a, b, z tels que M ¢ {A, B} :

z—b MB z—b —
== = arg(2—2) = (WA, MB) [27].
: .o, .. z—b ‘
i) | A, B et M sont alignés ssi : S € R
Z —_—
i) | (MA) et (MB) sont perpendiculaires ssi :i : . ciR

Exemple 1

Trouver les z € C\ {0,1, —1} tels que z, z2 et z> soient les
sommets d'un triangle rectangle en z.

115
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Soient b,w € C, A € R* et 6 € R.

= La translation de vecteur b est 'application
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Soient b,w € C, A € R* et 6 € R.

= La translation de vecteur b est I'application t: z — z + b.

= L'homothétie de centre w et de rapport A est |'application

h:z—Z ot Z-w=\Nz-w) ie h:izow+Az-w)

= La rotation de centre w et d'angle 6 est I'application

rozez ol Z—w=e(z—w)
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Translations, homothéties, rotations

Soient b,w € C, A € R* et 6 € R.

= La translation de vecteur b est I'application t: z — z + b.

= L'homothétie de centre w et de rapport A est |'application

h:z—Z ot Z-w=\Nz-w) ie h:izow+Az-w)

= La rotation de centre w et d'angle 6 est I'application

rizez ol Z—w=e%z—w) ie rizew+e(z—w)
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On appelle similitude directe toute application de C dans C de la
forme :
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= Sia#1, alors:
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i) f posséde un unique point invariant w =
—a




Similitudes directes

On appelle similitude directe toute application de C dans C de la
forme : z+—> az+ b, pour certains a € C* et b € C.

Théoréeme 2
Soient a€ C*, be C et f: z+— az + b une similitude directe.

= Sia=1, alors f est la translation de vecteur b.
= Sia#1, alors:
b

1-a
ii) pour tout z € C, z/ = f(z) est donné par: 2z —w = a(z —w)

i) f posséde un unique point invariant w =




Similitudes directes

Définition 2
On appelle similitude directe toute application de C dans C de la
forme : z+— az+ b, pour certains a € C* et b € C.

Théoréme 2

Soient a€ C*, be C et f: z+— az + b une similitude directe.

= Sia=1, alors f est la translation de vecteur b.
= Sia#1, alors:

i) f posséde un unique point invariant w = 1
—a
ii) pour tout z € C, z/ = f(z) est donné par: 2z —w = a(z —w)

Exercice 2

Démontrer les points i) et ii) du théoréme.
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Exemple 2

Caractériser géométriquement la similitude z — 2jz + 2 + /.
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