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Racine énième d’un complexe Z

Définition 1
Soit Z ∈ C∗.
On appelle racine n-ième de Z tout :

z ∈ C tel que zn = Z .

Exemple 1
Montrer que
a) 1 + i est une racine carrée de 2i

b) −1
2 + i

√
3

2 est une racine cubique de l’unité
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1 Racines n-ièmes de l’unité

Théorème 1
Il y a exactement n racines n-ièmes de l’unité, ce sont les complexes

ωk = e
2ikπ

n , pour k ∈ J0 , n − 1K

Notation
L’ensemble des racines n-ièmes de l’unité est noté Un.

Exercice 1 : Ex. 84.2, banque INP
Démontrer le théorème en cherchant tous les z ∈ C tels que zn = 1.
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1 Racines n-ièmes de l’unité

Théorème 2

1. Les racines n-ièmes de l’unité sont des puissances de ω1 :

∀k ∈ J0 , n − 1K, ωk = ωk
1

2. Pour n ≥ 2, la somme des racines n-ièmes de l’unité est nulle :

n−1∑
k=0

ωk = 0

Exercice 2
Démontrer le théorème.
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1 Racines n-ièmes de l’unité

Petites valeurs de n

• U2 =

{1, −1}

• U3 =
• U4 =

{1, −1, i , −i}
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1 Racines n-ièmes de l’unité

Définition 2

On pose j = e 2iπ
3 . Les racines 3e de l’unité sont :

1, j et j2

Relations à retenir :

• j3 = 1

• j2 = 1
j = j

• 1 + j + j2 = 0
• ∀z ∈ C, z2 + z + 1 = (z − j)(z − j )

j = −1
2 + i

√
3

2
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1 Racines n-ièmes de l’unité

Définition 2

On pose j = e 2iπ
3 . Les racines 3e de l’unité sont : 1, j et j2

Relations à retenir :
• j3 = 1

• j2 = 1
j = j

• 1 + j + j2 = 0
• ∀z ∈ C, z2 + z + 1 = (z − j)(z − j )

j = −1
2 + i

√
3

2

Exemple 2

Simplifier le complexe Z = 1 + j
1 + j
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1 Racines n-ièmes de l’unité

Définition 2

On pose j = e 2iπ
3 . Les racines 3e de l’unité sont : 1, j et j2

Relations à retenir :
• j3 = 1

• j2 = 1
j = j

• 1 + j + j2 = 0
• ∀z ∈ C, z2 + z + 1 = (z − j)(z − j )

j = −1
2 + i

√
3

2

Exemple 4 : Ex. 84.3, banque INP
Soit n ∈ N∗.
Résoudre l’équation : (z + i)n = (z − i)n d’inconnue z ∈ C.
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2 Racines n-ièmes d’un complexe Z non nul

Théorème 3
Le complexe Z = reiθ possède exactement n racines n-ièmes, ce
sont les complexes :

zk = r
1
n e

iθ
n + 2ikπ

n , pour k ∈ J0 , n − 1K.
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2 Racines n-ièmes d’un complexe Z non nul

Théorème 3
Le complexe Z = reiθ possède exactement n racines n-ièmes, ce
sont les complexes :

zk = r
1
n e

iθ
n + 2ikπ

n , pour k ∈ J0 , n − 1K.

Exercice 3
Démontrer le théorème en commençant par vérifier que z0 = r 1

n ei θ
n

convient.
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2 Racines n-ièmes d’un complexe Z non nul

Théorème 3
Le complexe Z = reiθ possède exactement n racines n-ièmes, ce
sont les complexes :

zk = r
1
n e

iθ
n + 2ikπ

n , pour k ∈ J0 , n − 1K.

Exemple 5
Déterminer les racines cubiques de : Z = 2 + 2i .
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2 Racines n-ièmes d’un complexe Z non nul

Théorème 3
Le complexe Z = reiθ possède exactement n racines n-ièmes, ce
sont les complexes :

zk = r
1
n e

iθ
n + 2ikπ

n , pour k ∈ J0 , n − 1K.

Exemple 6
Calculer sous forme algébrique les racines carrées de :
a) Z = 2i
b) Z = 3 − 4i
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II Second degré dans C

I Racines n-ièmes

II Second degré dans C

III Interprétation géométrique des complexes
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1 Calcul des racines carrées sous forme algébrique

Cadre

• On donne Z ∈ C∗

• On cherche les deux racines carrées de Z .

j Pas de
√

Z j

SF 14 : calculer une racine carrée δ d’un complexe Z

Exemple 1
Calculer les racines carrées de 3 − 4i .
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2 Equation du second degré à coefficients complexes

Cadre
On souhaite résoudre dans C l’équation (E ) : az2 + bz + c = 0

On pose
∆ = b2 − 4ac

Théorème 1

• Si

∆ = 0

, (E ) a une solution unique :

z0 = − b
2a

• Si

∆ ̸= 0

, (E ) a deux solutions distinctes :

z1 = −b + δ

2a et z2 = −b − δ

2a

où δ est une racine carrée de ∆.
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2 Equation du second degré à coefficients complexes

Cadre
On souhaite résoudre dans C l’équation (E ) : az2 + bz + c = 0

On pose
∆ = b2 − 4ac

Théorème 1

• Si ∆ = 0 , (E ) a une solution unique : z0 = − b
2a

• Si ∆ ̸= 0 , (E ) a deux solutions distinctes :

z1 = −b + δ

2a et z2 = −b − δ

2a

où δ est une racine carrée de ∆.

Exemple 2
Résoudre l’équation : z2 − (3 + i)z + 2 + i = 0 d’inconnue z ∈ C
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2 Equation du second degré à coefficients complexes

Cas particulier où le discriminant est réel

• si ∆ ≥ 0 : z1 = −b +
√

∆
2a et z2 = −b −

√
∆

2a

• si ∆ < 0 : z1 = −b + i
√

−∆
2a et z2 = −b − i

√
−∆

2a

On prend : δ =
√

∆
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3 Somme et produit des racines

Remarque

Les deux racines de (E ) vérifient : •

z1 + z2 = −b
a

•

z1z2 = c
a

Théorème 2

Soit s, p ∈ C. Les solutions de
{

z1 + z2 = s
z1z2 = p

sont :

les racines de

l’équation z2 − sz + p = 0.
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3 Somme et produit des racines

Remarque

Les deux racines de (E ) vérifient : • z1 + z2 = −b
a • z1z2 = c

a

Théorème 2

Soit s, p ∈ C. Les solutions de
{

z1 + z2 = s
z1z2 = p

sont : les racines de

l’équation z2 − sz + p = 0.

Exercice 2
Démontrer le théorème.
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3 Somme et produit des racines

Remarque

Les deux racines de (E ) vérifient : • z1 + z2 = −b
a • z1z2 = c

a

Théorème 2

Soit s, p ∈ C. Les solutions de
{

z1 + z2 = s
z1z2 = p

sont : les racines de

l’équation z2 − sz + p = 0.

SF 16 : Résoudre un système « somme-produit »

Exemple 3

Résoudre le système d’inconnue (z1, z2) ∈ C2 :
{

z1 + z2 = 6i
z1z2 = −13

.
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3 Somme et produit des racines

Remarque

Les deux racines de (E ) vérifient : • z1 + z2 = −b
a • z1z2 = c

a

Théorème 2

Soit s, p ∈ C. Les solutions de
{

z1 + z2 = s
z1z2 = p

sont : les racines de

l’équation z2 − sz + p = 0.

Exemple 4
Soit a ∈ C et θ ∈ R. Résoudre les équations d’inconnue z ∈ C :
a) z2 − 2z cos θ + 1 = 0
b) z2 − (1 + a + a2)z + a(1 + a2) = 0

12



4 Factorisation des polynômes : deux petits résultats

Cadre

• P est la fonction polynomiale : z 7→ a0 + a1z + · · · + anzn

• α ∈ C est une racine de P : P(α) = 0

Théorème 3
Il existe une fonction polynomiale Q telle que pour tout z ∈ C :

P(z) = (z − α)Q(z)

13
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4 Factorisation des polynômes : deux petits résultats

Cadre

• P est la fonction polynomiale : z 7→ a0 + a1z + · · · + anzn

• α ∈ C est une racine de P : P(α) = 0

Théorème 3
Il existe une fonction polynomiale Q telle que pour tout z ∈ C :

P(z) = (z − α)Q(z)

Exemple 5
Montrer que P : z 7→ (1 + z)7 − z7 − 1 est divisible par z2 + z + 1.
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III Interprétation géométrique des
complexes

I Racines n-ièmes

II Second degré dans C

III Interprétation géométrique des complexes
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1 Orthogonalité, alignement

Théorème 1 : Interprétation géométrique de z−b
z−a

Soient A, B, M d’affixes a, b, z tels que M /∈ {A, B} :
•

∣∣∣∣z − b
z − a

∣∣∣∣ =

MB
MA

• arg
(z − b
z − a

)
≡

(−→
MA,

−−→
MB) [2π].

i) A, B et M sont alignés ssi :

z − b
z − a ∈ R

ii) (MA) et (MB) sont perpendiculaires ssi :

z − b
z − a ∈ iR
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1 Orthogonalité, alignement

Théorème 1 : Interprétation géométrique de z−b
z−a

Soient A, B, M d’affixes a, b, z tels que M /∈ {A, B} :
•

∣∣∣∣z − b
z − a

∣∣∣∣ = MB
MA • arg

(z − b
z − a

)
≡ (−→

MA,
−−→
MB) [2π].

i) A, B et M sont alignés ssi : z − b
z − a ∈ R

ii) (MA) et (MB) sont perpendiculaires ssi :z − b
z − a ∈ iR

Exercice 1
Démontrer le théorème.
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1 Orthogonalité, alignement

Théorème 1 : Interprétation géométrique de z−b
z−a

Soient A, B, M d’affixes a, b, z tels que M /∈ {A, B} :
•

∣∣∣∣z − b
z − a

∣∣∣∣ = MB
MA • arg

(z − b
z − a

)
≡ (−→

MA,
−−→
MB) [2π].

i) A, B et M sont alignés ssi : z − b
z − a ∈ R

ii) (MA) et (MB) sont perpendiculaires ssi :z − b
z − a ∈ iR

Exemple 1
Trouver les z ∈ C \ {0, 1, −1} tels que z , z2 et z3 soient les
sommets d’un triangle rectangle en z .
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Translations, homothéties, rotations

Définition 1
Soient b, ω ∈ C, λ ∈ R∗ et θ ∈ R.
• La translation de vecteur b est l’application

t : z 7→ z + b.
• L’homothétie de centre ω et de rapport λ est l’application

h : z 7→ z ′ où z ′−ω = λ(z −ω)

i.e. h : z 7→ ω + λ(z − ω)

• La rotation de centre ω et d’angle θ est l’application

r : z 7→ z ′ où z ′−ω = eiθ(z−ω)

i.e. r : z 7→ ω + eiθ(z − ω)
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Similitudes directes

Définition 2
On appelle similitude directe toute application de C dans C de la
forme :

z 7→ az + b, pour certains a ∈ C∗ et b ∈ C.

Théorème 2
Soient a ∈ C∗, b ∈ C et f : z 7→ az + b une similitude directe.
• Si a = 1, alors f est la translation de vecteur b.
• Si a ̸= 1, alors :

i) f possède un unique point invariant ω = b
1 − a

ii) pour tout z ∈ C, z ′ = f (z) est donné par : z ′ − ω = a(z − ω)

Exemple 2
Caractériser géométriquement la similitude z 7→ 2iz + 2 + i .
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• Si a = 1, alors f est la translation de vecteur b.
• Si a ̸= 1, alors :

i) f possède un unique point invariant ω = b
1 − a

ii) pour tout z ∈ C, z ′ = f (z) est donné par : z ′ − ω = a(z − ω)

Exercice 2
Démontrer les points i) et ii) du théorème.

Exemple 2
Caractériser géométriquement la similitude z 7→ 2iz + 2 + i .
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