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2 Fonctions puissances

Objectif
Définir xα pour α ∈ R non nécessairement entier.

Remarque
Lorsque n ∈ N : xn =

en ln x

Définition 1
Pour tous x ∈ R∗

+ et α ∈ R, on pose :

xα =
déf.

eα ln x .

j Attention j

Lorsque α n’est pas un entier, xα n’est pas :

x × x × · · · × x︸ ︷︷ ︸
« α fois »
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2 Fonctions puissances

j Attention j

Lorsque α n’est pas un entier, xα n’est pas : x × x × · · · × x︸ ︷︷ ︸
« α fois »

Théorème 1
Pour tous α, β ∈ R et x , y ∈ R∗

+ :
•

ln(xα) = α ln x

•

xα+β = xαxβ

•

xαβ = (xα)β

•

(xy)α = xαyα

•

x−α = 1
xα

Conséquence
Pour n ∈ N∗ : (x1/n)n = x .

Le réel x1/n est appelé :

la racine n-ième de x , aussi noté n√x

Exercice 1
Démontrer les cinq propriétés du théorème.
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2 Fonctions puissances

Théorème 2 : Dérivée
Pour tout α ∈ R, la fonction pα : x 7→ xα est définie et dérivable
sur R∗

+ de dérivée :

pα
′ : x 7→ αxα−1.

Conséquence
Si u est une fonction dérivable et strictement positive, alors uα est
dérivable et :

(uα)′ = αu′uα−1
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2 Fonctions puissances

Théorème 2 : Dérivée
Pour tout α ∈ R, la fonction pα : x 7→ xα est définie et dérivable
sur R∗

+ de dérivée : pα
′ : x 7→ αxα−1.

Conséquence
Si u est une fonction dérivable et strictement positive, alors uα est
dérivable et : (uα)′ = αu′uα−1
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1. Calculer la dérivée de la fonction f : x 7→ xx .
2. Si u : R∗

+ → R est dérivable, calculer la dérivée de g : x 7→ xu(x).
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2 Fonctions puissances

Théorème 3 : Variations des fonctions puissances

• Cas α > 0
x 0 +∞

αxα−1

+

xα

0
+∞

• Cas α < 0
x 0 +∞

αxα−1

−

xα

+∞
0

Exercice 3
Soit α > 0. On prolonge pα en 0 en posant pα(0) = 0. Montrer que
la fonction pα est dérivable en 0 si et seulement si α ≥ 1.
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2 Fonctions puissances

Théorème 4 : croissances comparées généralisées
Soient α, β ∈ R∗

+

•

ex

xα
−→

x→+∞
+∞

•

(ln x)β

xα
−→

x→+∞
0

•

xα|ln x |β −→
x→0

0

Exercice 4

Etablir la deuxième limite en utilisant : lim
X→+∞

ln X
X = 0.
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1 Cosinus et sinus hyperboliques

Définition 1
On appelle cosinus hyperbolique et sinus hyperbolique, notées ch et
sh les fonctions définies sur R par

∀x ∈ R, ch x = ex + e−x

2 et sh x = ex − e−x

2

Théorème 1 : Propriétés des fonctions sh et ch

1. Parité.

ch est paire, sh est impaire.
2. Dérivées. sh et ch sont dérivables et :

sh′ = ch et ch′ = sh.

3. Limites.

ch x −→
x→±∞

+∞ et sh x −→
x→±∞

±∞.

4.

8
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1 Cosinus et sinus hyperboliques

Théorème 2
Pour tout réel x :

ch2x − sh2x = 1
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1 Cosinus et sinus hyperboliques

Théorème 2
Pour tout réel x :
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Exercice 1
Démontrer le théorème précédent.
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1 Cosinus et sinus hyperboliques

Théorème 2
Pour tout réel x :

ch2x − sh2x = 1

SF 2 : Equation avec des fonctions hyperboliques

Exemple 1
Résoudre l’équation : sh x =

√
3 d’inconnue x ∈ R.
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2 Tangente hyperbolique

Définition 2
On appelle tangente hyperbolique, notée th, la fonction définie par :
• th = sh

ch • Pour tout x ∈ R :

th x = ex − e−x

ex + e−x

= e2x − 1
e2x + 1

Théorème 3 : Propriétés de th

1. Parité.

th est impaire

2. Dérivée. th est dérivable et :

th′ = 1
ch2 = 1 − th2.

3. Limites.

th x −→
x→±∞

±1.
4. Ses variations sont données par :

x −∞ 0 +∞

th
−1

0
1
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III Fonction réciproque

I Fonction exponentielle, logarithme et puissances

II Fonctions hyperboliques

III Fonction réciproque

IV Fonctions circulaires réciproques

11



1 Notion de bijection

Cadre

• I, J sont des intervalles
• f : I → J est une fonction définie sur I et à valeurs dans J

Définition 1
On dit que f est bijective de I sur J ou que f est une bijection de I
sur J si :

tout y ∈ J possède un unique antécédent par f

Notation
Dans ce cas, on note f −1 la fonction de J dans I qui à y ∈ J
associe son antécédent par f .

Graphiquement
Les courbes de f et de f −1 sont symétriques par rapport à la droite
d’équation y = x

fonction réciproque de f

12
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2 Le théorème des valeurs intermédiaires strictement monotone

Cadre
I = [a , b[ (par exemple)

Théorème 1 : TVI strictement monotone
Si :

i) f est continue sur I = [a , b[
ii) f est strictement croissante sur I
iii) Aux bornes :

f (a) = α et f (x) −→
x→b

ℓ (finie ou non)

Alors :

f est bijective de .

Exemple 2
Montrer que f : x 7→ xex est bijective de [−1 , +∞[ sur
[−e−1 , +∞[.
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A adapter si f est décroissante
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3 Calcul de f −1(y)

En pratique : pour calculer f −1(y)
Pour y ∈ J fixé, on résout l’équation : f (x) = y d’inconnue
x ∈ I

Exemple 3
Montrer que f : x 7→ 10x est une bijection de R sur R∗

+ et
déterminer une expression de f −1.

14



Dérivée d’une réciproque

Théorème 2 : Admis provisoirement
Si :

• f est bijective de I sur J .
• f est dérivable sur I
• f ′ ne s’annule pas sur I

Alors :

f −1 est dérivable sur J et :

(
f −1)′ = 1

f ′ ◦ f −1

Exemple 4
On note W la réciproque de la fonction x 7→ xex étudiée à
l’exemple 2. Montrer que W est dérivable sur ]−e−1 , +∞[ et que
pour tout x > −e−1 : W ′(x) = W (x)

x
(
1 + W (x)

) .

15
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IV Fonctions circulaires réciproques

I Fonction exponentielle, logarithme et puissances

II Fonctions hyperboliques

III Fonction réciproque

IV Fonctions circulaires réciproques
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Arc sinus

Exercice 1
Montrer que sinus réalise une bijection de [−π

2 , π
2 ] sur [−1 , 1].

Définition 1
Arcsin est la fonction réciproque de

En pratique
Calculer θ = Arcsin x revient à trouver θ tel que :
•

θ ∈ [−π
2 , π

2 ]

•

sin θ = x .

Exemple 1
Calculer : Arcsin 1

2 , Arcsin 1, Arcsin 0 et Arcsin −
√

3
2 .
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Arc sinus

Conséquences

• Pour tout x ∈

[−1 , 1]

, sin(Arcsin x) =

x .

• Pour tout θ ∈

[−π
2 , π

2 ]

,

Arcsin(sin θ) = θ

Exemple 2
Calculer : Arcsin sin 2π

3 et Arcsin sin 20π
3

j C’est faux si θ /∈ [−π
2 , π

2 ] j

18
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Arc sinus

Théorème 1
• Sur [−1 , 1], Arcsin est :

• continue
• strictement croissante

• Arcsin est dérivable sur ]−1 , 1[ et pour tout x ∈ ]−1 , 1[ :

Arcsin′(x) = 1√
1 − x2
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Arc cosinus

Exercice 2
Montrer que cosinus réalise une bijection de [0 , π] sur [−1 , 1].

Définition 2
Arccos est la fonction réciproque de la restriction de cos à [0 , π]

En pratique
Calculer θ = Arccos x revient à trouver θ tel que :
•

θ ∈ [0 , π]

•

cos θ = x .

Exemple 3
Calculer : Arccos 1

2 , Arccos 1, Arccos 0 et Arccos −1
2 .
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Arc cosinus

Conséquences

• Pour tout x ∈

[−1 , 1]

, cos(Arccos x) =

x .

• Pour tout θ ∈

[0 , π]

,

Arccos(cos θ) = θ

Exemple 4

1. Calculer Arccos cos −π
3 et Arccos cos 20π

3 .
2. Simplifier Arccos cos θ pour θ ∈ [π , 2π].

j C’est faux si θ /∈ [0 , π] j
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Arc cosinus

Théorème 2
• Sur [−1 , 1], Arccos est :

• continue
• strictement décroissante

• Arccos est dérivable sur ]−1 , 1[ et pour tout x ∈ ]−1 , 1[ :

Arccos′(x) = − 1√
1 − x2
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Propriétés

Théorème 3
Pour tout x ∈ [−1 , 1] : cos(Arcsin x) = sin(Arccos x) =

√
1 − x2
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Propriétés

Théorème 3
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Propriétés

Théorème 3
Pour tout x ∈ [−1 , 1] : cos(Arcsin x) = sin(Arccos x) =

√
1 − x2

Exercice 3
Etablir l’égalité pour cos(Arcsin x).
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Propriétés

Théorème 3
Pour tout x ∈ [−1 , 1] : cos(Arcsin x) = sin(Arccos x) =

√
1 − x2

Exercice 4
Démontrer le résultat portant sur la dérivée de Arcsin.

23



Propriétés

SF 5 : Etablir une égalité du type : « ∀x ∈ I, f (x) = k »

Exemple 5
Montrer que pour tout x ∈ [−1 , 1] : Arccos x + Arcsin x = π

2

SF 7 : Résoudre une équation avec Arccos, Arcsin

Exemple 6
Résoudre l’équation d’inconnue x : Arccos x = 2 Arcsin x .

24
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2 Fonction Arc tangente

Exercice 1
Montrer que tan réalise une bijection de ]−π

2 , π
2 [ sur R.

Définition 1
Arctan est la fonction réciproque de la restriction de tan à ]−π

2 , π
2 [

En pratique
Calculer θ = Arctan x revient à trouver θ tel que :
•

θ ∈ ]−π
2 , π

2 [

•

tan θ = x .

Exemple 1

Calculer : Arctan 1, Arctan
√

3, Arctan 0 et Arctan −1√
3

.
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2 Fonction Arc tangente

Conséquences

• Pour tout x ∈

R

, tan(Arctan x) =

x .

• Pour tout θ ∈

]−π
2 , π

2 [

,

Arctan(tan θ) = θ

Exemple 2
Soit z = x + iy ∈ C \ iR.
Montrer qu’une forme trigonométrique de z est :
• Si x > 0 : z =

√
x2 + y2 ei Arctan y

x

• Si x < 0 : z =
√

x2 + y2 ei(π+Arctan y
x )

j C’est faux si θ /∈ ]−π
2 , π

2 [ j
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Propriétés de Arctan

Théorème 1
Sur R, Arctan est :

• continue
• strictement croissante

Théorème 2

Arctan est impaire

Exercice 2
Prouver l’imparité de Arctan.
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Propriétés de Arctan

Théorème 3
Arctan est dérivable sur R et :

∀x ∈ R, Arctan′(x) = 1
1 + x2

Exercice 3
Démontrer le théorème en utilisant la formule de dérivation des
fonctions réciproques.
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Propriétés de Arctan

Théorème 4

Pour tout x ∈ R∗ : Arctan x + Arctan 1
x =


π

2 si x > 0
−π

2 si x < 0
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Pour tout x ∈ R∗ : Arctan x + Arctan 1
x =


π

2 si x > 0
−π

2 si x < 0

Exercice 4
Démontrer le théorème en s’inspirant de la preuve de :

∀x ∈ [−1 , 1], Arccos x + Arcsin x = π

2
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Propriétés de Arctan

Théorème 4

Pour tout x ∈ R∗ : Arctan x + Arctan 1
x =


π

2 si x > 0
−π

2 si x < 0

SF 7 : Résoudre une équation avec Arctan

Exemple 3
Résoudre l’équation d’inconnue x : Arctan 2x + Arctan 3x = π

4 .
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