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1 Structure de C

i) C contient R et on peut étendre aux nombres complexes
l’addition et la multiplication des réels ;

ii) C possède un élément i tel que : i2 = −1 ;
iii) Tout z ∈ C s’écrit de manière unique sous forme algébrique :

z = x + iy , avec x , y ∈ R

Remarque
• z est réel ssi :

Im(z) = 0.

• Lorsque Re(z) = 0 on dit que :

z est imaginaire pur.
On note iR l’ensemble des imaginaires purs.

j Attention j En général :

Re
(
zz ′) ̸= Re(z) × Re(z ′) et Im

(
zz ′) ̸= Im(z) × Im(z ′)
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Représentation géométrique des complexes

Le plan est muni d’un repère orthonormal direct (O, ı⃗, ȷ⃗).
Tout complexe z = x + iy peut être identifié :

• Au point M(x , y) on dit que z est l’affixe de M
• Au vecteur u⃗(x , y) on dit que z est l’affixe de u⃗

Rappel
Si a ∈ C est l’affixe du point A et si b ∈ C l’affixe de B alors le
vecteur −→

AB a pour affixe :

b − a.
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Conjugaison

Définition 1
Soit z = x + iy ∈ C. Le conjugué de z est le complexe : z = x − iy .

Théorème 1 : Propriétés du conjugué
•

z + z = 2 Re(z)

•

z − z = 2i Im(z)

•

(z) = z

Théorème 2 : Règles de calculs pour manipuler des conjugués

•

z + z ′ = z + z ′

•

zz ′ = z × z ′

•

Si z ̸= 0 :
(z ′

z
)

= z ′

z

Exemple 1

Soit z ∈ C. Montrer que le nombre complexe z − iz
i − 1 est réel.
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4 Module

Définition 2
Soit z = x + iy ∈ C.
• Le module de z est :|z | =

√
x2 + y2. • Retenir :

|z |2 = zz
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4 Module

Définition 2
Soit z = x + iy ∈ C.
• Le module de z est :|z | =

√
x2 + y2. • Retenir : |z |2 = zz

Exemple 2

Mettre sous forme algébrique le complexe : z = 3 + 6i
3 − 4i .
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4 Module

Théorème 3 : Règles de calcul avec le module
Soient z , z ′ ∈ C et n ∈ N.
• |z| = |z | •

|zz ′| = |z | |z ′|

•

Si z ̸= 0 :
∣∣∣∣z ′

z

∣∣∣∣ = |z ′|
|z |

•

|zn| = |z |n

Inégalités triangulaires.
1.

|z + z ′| ≤ |z | + |z ′|

2.

|z − z ′| ≥

Remarque
Si z ∈ R :

Module de z = valeur absolue de z

Exercice 1

1. Démontrer les inégalités triangulaires.
2. Montrer qu’il y égalité ssi z et z ′ sont colinéaires de même sens.
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4 Module

Géométriquement

• Si u⃗ a pour affixe z :

|z | = ∥u⃗ ∥.
• Si A, B ont pour affixes a, b :

|b − a| = AB

Exercice 2
Décrire géométriquement les ensembles :
a) b)

Exemple 3
Trouver tous les z ∈ C tels que : |z − 1| = |z |.
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1 Complexes de modules 1

Notation
U est l’ensemble des complexes de module 1 : U=

{z ∈ C | |z |=1}

Retenir

Pour tout z ∈ C∗ : z ∈ U ssi :

z = 1
z

Définition 1
Pour tout réel θ, on pose : eiθ =

déf.

cos θ + i sin θ

Exemple 1

e 2iπ
3 =

−1
2 + i

√
3

2

Valeurs à connaître
• ei0 = e2iπ =

1

• ei π
2 =

i

• eiπ =

−1

• e−i π
2 =

−i
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1 Complexes de modules 1

Valeurs à connaître
• ei0 = e2iπ = 1 • ei π

2 = i • eiπ = −1 • e−i π
2 = −i

Théorème 1

1. Pour tout z ∈ C :

|z | = 1 ssi il existe θ ∈ R tel que z = eiθ.
2. Pour tout θ, θ′ ∈ R :

eiθ = eiθ′ ssi θ ≡ θ′[2π].

3. Pour tout θ ∈ R :

e−iθ = eiθ = 1
eiθ .

4. Pour tout θ ∈ R :

ei(θ+θ′) = eiθ × eiθ′
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1 Complexes de modules 1

Théorème 1

1. Pour tout z ∈ C : |z | = 1 ssi il existe θ ∈ R tel que z = eiθ.
2. Pour tout θ, θ′ ∈ R : eiθ = eiθ′ ssi θ ≡ θ′[2π].

3. Pour tout θ ∈ R : e−iθ = eiθ = 1
eiθ .

4. Pour tout θ ∈ R : ei(θ+θ′) = eiθ × eiθ′

Exercice 1
Démontrer les points 3 et 4.
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1 Complexes de modules 1

Théorème 1

1. Pour tout z ∈ C : |z | = 1 ssi il existe θ ∈ R tel que z = eiθ.
2. Pour tout θ, θ′ ∈ R : eiθ = eiθ′ ssi θ ≡ θ′[2π].

3. Pour tout θ ∈ R : e−iθ = eiθ = 1
eiθ .

4. Pour tout θ ∈ R : ei(θ+θ′) = eiθ × eiθ′

SF 4 : Exploiter le fait que z est de module 1

Exemple 2

Trouver tous les z ∈ C∗ tels que : |z | =
∣∣∣∣1
z

∣∣∣∣ = |z − 1|.
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2 Formule de Moivre et formules d’Euler

Théorème 2

1. Formule de Moivre. Pour tout θ ∈ R et tout n ∈ N :

(
cos θ + i sin θ

)n =

cos(nθ) + i sin(nθ)

2. Formules d’Euler. Pour tout θ ∈ R :

cos θ =

eiθ + e−iθ

2

et sin θ =

eiθ − e−iθ

2i

Exercice 2
Démontrer la formule de Moivre et les formules d’Euler.
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2 Formule de Moivre et formules d’Euler

Théorème 3 : Transformation de 1 ± e iθ

Soit θ ∈ R.
• 1 + eiθ =

2 cos
(θ

2
)
ei θ

2

• 1 − eiθ =

−2i sin
(θ

2
)
ei θ

2

Exercice 3
Démontrer ces deux formules en « factorisant par l’angle moitié »

SF 5 : factoriser par l’angle moitié

Exemple 3
En factorisant eip + eiq par l’angle moitié, retrouver la formule de
factorisation de cos p + cos q.
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Euler et linéarisation

Qu’est-ce que linéariser ?

cos2 x =

1 + cos(2x)
2

cos3 x =

cos(3x) + 3 cos x
4

Exemple 4
Soit x ∈ R. Linéariser : a) sin5 x b) cos4 x sin x

SF 6 : Utiliser Euler pour linéariser cosp x sinq x

1. Euler : cosp x sinq x =
(eix + e−ix

2

)p(eix − e−ix

2i

)q

2. Binôme : On développe entièrement
3. Euler : On regroupe les einx et les e−inx .

13



Euler et linéarisation

Qu’est-ce que linéariser ?

cos2 x = 1 + cos(2x)
2 cos3 x = cos(3x) + 3 cos x

4

Exemple 4
Soit x ∈ R. Linéariser : a) sin5 x b) cos4 x sin x

SF 6 : Utiliser Euler pour linéariser cosp x sinq x

1. Euler : cosp x sinq x =
(eix + e−ix

2

)p(eix − e−ix

2i

)q

2. Binôme : On développe entièrement
3. Euler : On regroupe les einx et les e−inx .

13



Euler et linéarisation

Exemple 4
Soit x ∈ R. Linéariser : a) sin5 x b) cos4 x sin x

SF 6 : Utiliser Euler pour linéariser cosp x sinq x

1. Euler : cosp x sinq x =
(eix + e−ix

2

)p(eix − e−ix

2i

)q

2. Binôme : On développe entièrement
3. Euler : On regroupe les einx et les e−inx .

13



Euler et linéarisation

Exemple 4
Soit x ∈ R. Linéariser : a) sin5 x b) cos4 x sin x

SF 6 : Utiliser Euler pour linéariser cosp x sinq x

1. Euler : cosp x sinq x =
(eix + e−ix

2

)p(eix − e−ix

2i

)q

2. Binôme : On développe entièrement
3. Euler : On regroupe les einx et les e−inx .

13



Euler et linéarisation

Exemple 4
Soit x ∈ R. Linéariser : a) sin5 x b) cos4 x sin x

SF 6 : Utiliser Euler pour linéariser cosp x sinq x

1. Euler : cosp x sinq x =
(eix + e−ix

2

)p(eix − e−ix

2i

)q

2. Binôme : On développe entièrement

3. Euler : On regroupe les einx et les e−inx .

13



Euler et linéarisation

Exemple 4
Soit x ∈ R. Linéariser : a) sin5 x b) cos4 x sin x

SF 6 : Utiliser Euler pour linéariser cosp x sinq x

1. Euler : cosp x sinq x =
(eix + e−ix

2

)p(eix − e−ix

2i

)q

2. Binôme : On développe entièrement
3. Euler : On regroupe les einx et les e−inx .

13



Moivre et « délinéarisation »

Exemple 5
Soit x ∈ R. Ecrire cos(4x) comme un polynôme en cos x et sin x .

SF 7 : Utiliser Moivre pour « délinéariser » cos(nx)

1. Moivre : cos(nx) = Re
(
(cos x + i sin x)n)

2. Binôme : On développe.
3. On extrait la partie réelle.
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Calcul de sommes trigonométriques

Exemple 6
Soient x ∈ R. et n ∈ N.
Calculer les sommes : Cn =

n∑
k=0

cos(kx) et Sn =
n∑

k=0
sin(kx).

SF 8 : Calculer des sommes trigonométriques

1. On utilise : cos θ = Re(eiθ) et sin θ = Im(eiθ)
2. On utilise la linéarité de Re et Im :

Re
(∑

#
)

=
∑

Re(#) et Im
(∑

#
)

=
∑

Im(#)
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III Forme trigonométrique

I Rappels sur l’ensemble C

II Exponentielle imaginaire

III Forme trigonométrique
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1 Argument d’un complexe z non nul

Définition 1
Un argument de z ∈ C∗ est :

un réel θ tel que eiθ = z
|z |

Notation
On écrit :

arg z ≡ θ [2π]

Remarque
Un tel θ existe car :

z
|z |

∈ U

Retenir Pour tous r , r ′ > 0 et θ, θ′ ∈ R :

reiθ = r ′eiθ′ ssi :

r = r ′ et θ ≡ θ′ [2π]
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Exemple 1 : Mettre sous forme trigonométrique

a) z1 = 1 + i b) z2 =
√

6 + i
√

2
2 + 2i

c) z3 = xeiθ (x ∈ R∗, θ ∈ R)
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Définition 1
Un argument de z ∈ C∗ est : un réel θ tel que eiθ = z

|z |

Notation
On écrit : arg z ≡ θ [2π]

Remarque
Un tel θ existe car : z

|z |
∈ U

Retenir Pour tous r , r ′ > 0 et θ, θ′ ∈ R :

reiθ = r ′eiθ′ ssi : r = r ′ et θ ≡ θ′ [2π]

Exemple 2
On pose ω = e iπ

n . Déterminer tous les p ∈ Z tels que ωp soit réel.
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1 Argument d’un complexe z non nul

Théorème 1
Pour tous z , z ′ ∈ C∗ :
•arg(zz ′) ≡

arg(z) + arg(z ′) [2π]

•arg
( z

z ′

)
≡

arg z − arg z ′ [2π]
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1 Argument d’un complexe z non nul

Théorème 1
Pour tous z , z ′ ∈ C∗ :
•arg(zz ′) ≡ arg(z) + arg(z ′) [2π] •arg

( z
z ′

)
≡ arg z − arg z ′ [2π]

SF 9 : calculer les puissances d’un complexe

Exemple 3
Donner la forme algébrique de (1 + i)10.
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1 Argument d’un complexe z non nul

Théorème 1
Pour tous z , z ′ ∈ C∗ :
•arg(zz ′) ≡ arg(z) + arg(z ′) [2π] •arg

( z
z ′

)
≡ arg z − arg z ′ [2π]

Exercice 1

Soient z1, . . . , zn ∈ C∗. Montrer que
∣∣∣∣∣

n∑
k=1

zk

∣∣∣∣∣ ≤
n∑

k=1
|zk | avec égalité

ssi z1, . . . , zn ont même argument.

18



2 Exponentielle complexe

Définition 2
Soit z = x + iy ∈ C.
L’exponentielle de z est le complexe : exp(z) =

déf.

ex eiy

Par construction : • |exp(z)| =

ex

• arg(exp z) ≡

y [2π]

exponentielle
réelle

exponentielle imaginaire
cos y + i sin y

Exemple 4
Donner la forme algébrique de Z = exp(2 + i π

3 ).
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2 Exponentielle complexe

Théorème 2 : Relation fonctionnelle
Pour tous z , z ′ ∈ C :

exp(z + z ′) = exp(z) exp(z ′)

20
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2 Exponentielle complexe

Théorème 2 : Relation fonctionnelle
Pour tous z , z ′ ∈ C : exp(z + z ′) = exp(z) exp(z ′)

Exercice 2
Démontrer la formule du théorème.
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2 Exponentielle complexe

Théorème 2 : Relation fonctionnelle
Pour tous z , z ′ ∈ C : exp(z + z ′) = exp(z) exp(z ′)

SF 10 : Résoudre une équation de la forme exp(z) = a

Exemple 5
Résoudre les équations d’inconnue z ∈ C :
a) exp(z) =

√
3 + i b) exp(izπ) = 1 − i

20



3 Complément : dérivation des fonctions complexes

Cadre

• On considère une fonction φ : I → C
• Pour tout t ∈ I : φ(t) = u(t) + iv(t)

• Pour tout t ∈ I : φ(t) = u(t) + i v(t)

Dérivée

Si les fonctions u et v sont dérivables : φ′(t) =
déf.

u′(t) + iv ′(t)
pour tout t ∈ I

Intégrale

Si u et v sont continues :
∫ b

a
φ(t) dt =

déf.

∫ b

a
u(t) dt + i

∫ b

a
v(t) dt
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