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1 Structure de C

i) C contient R et on peut étendre aux nombres complexes
I'addition et la multiplication des réels;

i) C posséde un élément i tel que : > = —1;
iii) Tout z € C s'écrit de maniére unique sous forme algébrique :
z=x+1iy, avecx,y€eR

Remarque

= z est réel ssi: Im(z) =0.

» Lorsque Re(z) = 0 on dit que : z est imaginaire pur.
On note iR I'ensemble des imaginaires purs.

“* Attention % En général :
Re(zz') # Re(z) x Re(Z) et Im(zz') # Im(z) x Im(2')
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Représentation géométrique des complexes

Le plan est muni d'un repére orthonormal direct (O, 7, 7).
Tout complexe z = x + iy peut étre identifié :

= Au point M(x,y) on dit que z est |'affixe de M

= Au vecteur i(x,y) on dit que z est I'affixe de i

Rappel

Si a € C est I'affixe du point A et si b € C I'affixe de B alors le
vecteur AB a pour affixe : b — a.
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Conjugaison

Soit z = x + iy € C. Le conjugué de z est le complexe : Z = x — iy.

Théoréme 1 : Propriétés du conjugué

» z4+Z=2Re(z2) " z—Z=2iIm(2) » (2) =z

Théoreme 2 : Reégles de calculs pour manipuler des conjugués

w724+ 72 =7z 472 wzzZ =7z xZ7 =
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Conjugaison

Soit z = x + iy € C. Le conjugué de z est le complexe : Z = x — iy.

Théoréme 1 : Propriétés du conjugué

Exemple 1

— iz ;
est réel.

Soit z € C. Montrer que le nombre complexe
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Soit z=x+ iy € C.
= Le module de z est :|z| = \/x2 + y2. = Retenir : | |z|* = zz




4 Module

Définition 2
Soit z=x+ iy € C.
= Le module de z est :|z| = /X% + y2. = Retenir : | |z|* = 2z

Exemple 2

Mettre sous forme algébrique le complexe : Z = -
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Soient z,z2/ € C et n € N.

I’?‘:‘Z’ n n ]
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Théoreme 3 : Regles de calcul avec le module

Soient z,z2/ € C et n € N.

Z'| |7

cfEl =2l = J2| = ]| eSiz A0 =
V4




4 Module

Théoreme 3 : Regles de calcul avec le module

Soient z,z2/ € C et n € N.

/ /
2| =Bl o= e
F

2 2| = |z] w |ZZ|=|z||Z| =Siz#0: | =
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Théoreme 3 : Regles de calcul avec le module

Soient z,z2/ € C et n € N.

/ /
2l =2 ey = o
Z

2 2| = |z] w |ZZ|=|z||Z| =Siz#0: | =

Inégalités triangulaires.
1. |z+Z| < |z| + |Z] 2.



4 Module

Théoreme 3 : Regles de calcul avec le module

Soient z,z2/ € C et n € N.

z' |Z'|
—_— = — n ’Z
z|

" [zl =|z| = |2Z| =|2||Z] =Siz#0: "=z

Inégalités triangulaires.
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Théoreme 3 : Regles de calcul avec le module

Soient z,z2/ € C et n € N.

z' |Z'|
—_— = — n ’Z
z|

" [zl =|z| = |2Z| =|2||Z] =Siz#0: "=z

Inégalités triangulaires.
1 |2+ 7] < |zl + |7/ 2. |z—2| > |7~



4 Module

Théoreme 3 : Regles de calcul avec le module

Soient z,z € Cet n € N.

1 _ 17

:7I|Z

2]

“ 2l =l2| = |2Z|=|2]|Z] =Siz#£0:|% =z
V4

Inégalités triangulaires.

1 |24 7| < |2|+|7] 2. |z-2| > |lz2I- |2




4 Module

Théoreme 3 : Regles de calcul avec le module

Soient z,z € C et n € N.

/ ‘Z/‘

tE =2 sz = lel 2] Sz #£0T = e 2 =
z

Inégalités triangulaires.

1 |z+2| < |z + |2 2. |z=2| > ||z| = |7

Au choix :
2| = || ou |Z'| — |2




4 Module

Théoreme 3 : Regles de calcul avec le module

Soient z,z € C et n € N.

117

/
s 2l =l2| = |2z =|2||Z| =Siz#£0:{> =" |2 = |2|”
z
Inégalités triangulaires.
L |z+7| < |z +17 2. |z-2| = | lzI- 2]
Au choix :
Remarque |z| — |Z| ou |2'| — |2

SizeR:



4 Module

Théoreme 3 : Regles de calcul avec le module

Soient z,z € C et n € N.

117

/
s 2l =l2| = |2z =|2||Z| =Siz#£0:{> =" |2 = |2|”
z
Inégalités triangulaires.
L |z+7| < |z +17 2. |z-2| = | lzI- 2]
Au choix :
Remarque |z| — |Z| ou |2'| — |2

SizeR: Module de z = valeur absolue de z



4 Module

Théoreme 3 : Regles de calcul avec le module

Soient z,Z € Cet n€ N.

/ ‘Z/‘

tE =2 sz = lel 2] Sz #£0T = e 2 =
Inégalités triangulaires.
L |z+2| < 2|+ 2| 2. |z=2| > ||z| = |7
Au ’<>10ix : }
Remarque |z| —|2'| ou |Z'| — |Z]
SizeR: Module de z = valeur absolue de z

1. Démontrer les inégalités triangulaires.

2. Montrer qu'il y égalité ssi z et z’ sont colinéaires de méme sens.
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4 Module

Géométriquement

= Sidapouraffixe z: |z| =[]
= Si A, B ont pour affixes a,b: |b—a| = AB

Exercice 2

Décrire géométriquement les ensembles :
a) ¢={zeC | |z—al=r} b) 2={z€C | |z—a|<r}
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4 Module

Géométriquement

» Si i apour affixe z:  |z| = |||
= Si A, B ont pour affixes a,b: |b— a| = AB

Cercle de centre a Disque de centre a
et de rayon r et de rayon r

Décrire géomé\t&quement les ensembles :
a) ={ze€C | |z—a|l=r} b) 2={z€C | |z—a|<r}

Exemple 3

Trouver tous les z € C tels que : |z —1| = |z|.
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I Exponentielle imaginaire
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Notation

U est I'ensemble des complexes de module 1 : U={z € C | |z|=1}

Retenir

1
Pour tout z € C* : [ZEU ssi : z]

V4
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1 Complexes de modules 1

Notation

U est I'ensemble des complexes de module 1 : U={z € C | |z|=1}

Retenir

—_

Pour tout z € C* : zelU ssi: z

Définition 1

| N

Pour tout réel 6, on pose : el? = cos + isiné
Eis

Exemple 1

i 1 3

2
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Notation

U est I'ensemble des complexes de module 1 : U={z € C | |z|=1}

Retenir

—_

Pour tout z € C* : zelU ssi: z

Définition 1

| N

Pour tout réel 6, on pose : el? = cos + isiné
Eis
Exemple 1
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1 Complexes de modules 1

Notation

U est I'ensemble des complexes de module 1 : U={z € C | |z|=1}

Retenir

—_

Pour tout z € C* : zelU ssi: z

Définition 1

| N

Pour tout réel 6, on pose : el? = cos + isiné
Eis
Exemple 1
2ir 1 \@
e =—— +i-—
2 2
Valeurs a connaitre

.ei0:e2i7'r:1 lei%:i leiﬂ':—l m e 2 =
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Valeurs a connaitre

leiozeziﬂ-:l lei%:i leiﬂ':—l Ie_i%:—['

1. Pour tout z € C :

10
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Valeurs a connaitre
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Valeurs a connaitre

leiozeziﬂ-:l lei%:i leiﬂ':—l Ie_i%:—['

1. Pourtout z € C: |z| =1 ssi il existe § € R tel que z = .

2. Pour tout 0,6 € R : el = e/ ssi § = ¢'[2n].
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Valeurs a connaitre

P . s .
2 m—_1 wme'2 =—j

s e0=e2"=1 we2=j me

Théoréme 1
i

1. Pour tout z € C :
2. Pour tout 0,0’ € R :

|z] = 1 ssi il existe § € R tel que z = €'’.
el = e/ ssi § = ¢'[2n].

3. Pour tout 8 € R :
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Valeurs a connaitre

- ei0:eZiﬂ':1 - ei

Théoréme 1

|z| =1 ssi il existe € R tel que z = e
el = e/ ssi § = ¢'[2n].
1

—i0 _ i _ ~
=€ = g

1. Pour tout z € C :
2. Pour tout 0,0’ € R :

3. Pourtout e R: e

i0
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Valeurs a connaitre
leiozeziﬂ-:l lei%:i leiﬂ':—l Ie_i%:—['

1. Pourtout z € C: |z| =1 ssi il existe § € R tel que z = .
2. Pour tout 0,6 € R : el = e/ ssi § = ¢'[2n].
. — 1
3. Pourtout 0 e R: e ¥ =¢ = i
e

4. Pour tout # € R :
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Valeurs a connaitre
leiozeziﬂ-:l lei%:i leiﬂ':—l Ie_i%:—['

1. Pourtout z € C: |z| =1 ssi il existe § € R tel que z = .
2. Pour tout 0,6 € R : el = e/ ssi § = ¢'[2n].
. — 1
3. Pourtout 0 e R: e ¥ =¢ = i
e

4, Pourtout 0 e R: €/(0+0) — it x it



1 Complexes de modules 1

1. Pourtout z € C: |z| =1 ssi il existe 6 € R tel que z = e
2. Pour tout 6,0 e R : el = e/ ssi § = /[ 27].

1

el

4. Pourtout e R: /0+0) = ¥ 5 o’

3. Pourtout e R: e /0 =elf =

Exercice 1

Démontrer les points 3 et 4.



1 Complexes de modules 1

1. Pourtout z € C: |z| =1 ssi il existe 6 € R tel que z = /.
2. Pour tout 6,0 e R : el = e/ ssi § = /[ 27].
. — 1
3. Pourtout e R: e ¥ =e =
e
4. Pourtout e R: /0+0) = ¥ 5 o’

SF 4 : Exploiter le fait que z est de module 1

Exemple 2

Trouver tous les z € C* tels que :  |z| = H =|z-1|.
V4
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1. Formule de Moivre. Pour tout 0 € R et tout n € N :

2. Formules d’Euler. Pour tout 6 € R :
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2 Formule de Moivre et formules d’Euler

1. Formule de Moivre. Pour tout 0 € R et tout n € N :

(cos@ + isin@)" = cos(nf) + isin(nd)

2. Formules d’Euler. Pour tout § € R :

ei0 1 g—if ol _ =i
cosf) = ——— et sinf = ———
2 2i



2 Formule de Moivre et formules d’Euler

1. Formule de Moivre. Pour tout 0 € R et tout n € N :

(cosf + isin#)" = cos(nf) + isin(nd)

2. Formules d’Euler. Pour tout § € R :

ei0 1 g—if ol _ =i
cosf) = ——— et sinf = ———
2 2i

Exercice 2

Démontrer la formule de Moivre et les formules d'Euler.




2 Formule de Moivre et formules d’Euler

Théoréeme 3 : Transformation de 1 + e

Soit 0 € R.
-1+ei6’: .1761'9:

12



2 Formule de Moivre et formules d’Euler

Théoréeme 3 : Transformation de 1 + e

Soit 0 € R. .
. 0 _ YN i .l a0 _
1+e —2cos(2)e2 l1—e

12



2 Formule de Moivre et formules d’Euler

Théoréeme 3 : Transformation de 1 + e

Soit 0 € R.
= 1+ei9:2cos(§)eig ] 1—ei9:—2isin(§)eig

12



2 Formule de Moivre et formules d’Euler

Théoréeme 3 : Transformation de 1 + e

Soit 0 € R.
= 1+ei9:2cos<g)eig ] 1—ei9:—2isin<g)eig

Exercice 3

Démontrer ces deux formules en « factorisant par |I'angle moitié »
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2 Formule de Moivre et formules d’Euler

Théoréeme 3 : Transformation de 1 + e

Soit 0 € R.
. 1+ei9:2cos<g>eig ] 1—ei9:—2isin<g)eig

Exercice 3

Démontrer ces deux formules en « factorisant par |I'angle moitié »

SF 5 : factoriser par I’angle moitié

Exemple 3

En factorisant e + €@ par I'angle moitié, retrouver la formule de
factorisation de cos p + cos q.

12



Euler et linéarisation

Qu’est-ce que linéariser ?

COS2 X = COS3 X =

13



Euler et linéarisation

Qu’est-ce que linéariser ?

1 2 3 3
cos? x — + c;s( x) o3 x — cos( x):— Cos X

13



Euler et linéarisation

Exemple 4

5

Soit x € R. Linéariser :  a) sin®x b) cos*

X sin x

13



Euler et linéarisation

Exemple 4

Soit x € R. Linéariser :  a) sin®x b) cos*

X sin x

SF 6 : Utiliser Euler pour linéariser cos” x sin9 x

ix —ix\ P ix _ a—ix\ 9
1. Euler: cosP xsin9x = (e +2€ ) (e 2.e )
i

13



Euler et linéarisation

Exemple 4

Soit x € R. Linéariser :  a) sin®x b) cos*

X sin x

SF 6 : Utiliser Euler pour linéariser cos” x sin9 x

ix —ix\ P ix _ a—ix\ 9
1. Euler: cosP xsin9x = (e +2€ ) (e 2.e )
i

2. Binéme : On développe entiérement

13



Euler et linéarisation

Exemple 4

% x b) cos* xsin x

Soit x € R. Linéariser :  a) sin
SF 6 : Utiliser Euler pour linéariser cos” x sin9 x

ix —ix\ P ix _ a—ix\ 9
1. Euler: cosP xsin9x = (e +2€ ) (e 2.e )
i

2. Binéme : On développe entiérement

3. Euler : On regroupe les e™ et les e~

inx

13



Moivre et « délinéarisation »

Exemple 5

Soit x € R. Ecrire cos(4x) comme un polynéme en cos x et sin x.

14
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Exemple 5
Soit x € R. Ecrire cos(4x) comme un polynéme en cos x et sin x.

SF 7 : Utiliser Moivre pour « délinéariser » cos(nx)

1. Moivre: cos(nx) = Re((cosx + isinx)")
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Soit x € R. Ecrire cos(4x) comme un polynéme en cos x et sin x.
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1. Moivre: cos(nx) = Re((cosx + isinx)")

2. Binéme : On développe.
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Moivre et « délinéarisation »

Exemple 5

Soit x € R. Ecrire cos(4x) comme un polynéme en cos x et sin x.

SF 7 : Utiliser Moivre pour « délinéariser » cos(nx)

1. Moivre: cos(nx) = Re((cosx + isinx)")
2. Binéme : On développe.
3. On extrait la partie réelle.

14



Calcul de sommes trigonométriques

Exemple 6

Soient x € R. et n € N. . .

Calculer les sommes : G, = Z cos(kx) et S,= Z sin(kx).
k=0 k=0

115)



Calcul de sommes trigonométriques

Exemple 6

Soient x € R. et n € N. . .

Calculer les sommes : G, = Z cos(kx) et S,= Z sin(kx).
k=0 k=0

SF 8 : Calculer des sommes trigonométriques

1. On utilise : cosf = Re(e®) et sin® = Im(e™)
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Calcul de sommes trigonométriques

Exemple 6

Soient x € R. et n € N. . .

Calculer les sommes : G, = Z cos(kx) et S,= Z sin(kx).
k=0 k=0

SF 8 : Calculer des sommes trigonométriques

1. On utilise : cosf = Re(e®) et sin® = Im(e™)

2. On utilise la linéarité de Re et Im :

Re(D #) =) Re(#) et ImD_#)=> Im(#)

115)



I} Forme trigonométrique

I Forme trigonométrique
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1 Argument d’un complexe z non nul

Un argument de z € C* est :
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1 Argument d’un complexe z non nul

Définition 1
, 0 Z
Un argument de z € C* est : un réel 0 tel que e’ = ﬂ
V4

Notation
On écrit: argz =0 [27]
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Définition 1
. ; z
Un argument de z € C* est : un réel 0 tel que e’ = H
V4
Notation Remarque
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1 Argument d’un complexe z non nul

Définition 1
z 2 4
Un argument de z € C* est : un réel 0 tel que e’ = ﬂ
V4

Notation Remarque

V4
Un tel 6 existe car: — € U

2|

On écrit : argz =6 [27]

Retenir Pour tous r,r’ >0et 0,0 € R :

: — _
re’ = r'el?  ssi: ]




1 Argument d’un complexe z non nul

Définition 1
z 2 4
Un argument de z € C* est : un réel 0 tel que e’ = ﬂ
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Notation Remarque
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1 Argument d’un complexe z non nul

Définition 1

, - z
Un argument de z € C* est : un réel 6 tel que e/ = H
z
Notation Remarque i
On écrit : argz =6 [27] Un tel 6 existe car : E cU
z
Retenir Pour tous r,r' > 0et 6,0 € R :
re =r'e? ssi: r=r et 0=0 [277]]

Exemple 1 : Mettre sous forme trigonométrique

V6 + V2
) a=14i b) n="——7



1 Argument d’un complexe z non nul

io _ %

2|

Un argument de z € C* est : un réel 6 tel que e

Notation Remarque

z
On écrit : argz =0 [27] Un tel 0 existe car: — € U

2|

Retenir Pour tous r,r’ >0et 0,0 € R :

re = el ssic r=r et =6 [277]]

Exemple 1 : Mettre sous forme trigonométrique

_VE+iv2

a) z=14i b) z= >0 c) z3=xe"? (x € R*, § € R)



1 Argument d’un complexe z non nul

Définition 1
Un argument de z € C* est : un réel 6 tel que e

i0 _

E4
Notation Remarque
On écrit : argz =0 [27] Un tel 6 existe car : é elU
Retenir Pour tous r,r’ >0et 0,0 € R :
re® = e ssi: r=r et 0=¢ [277]]

Exemple 2

i , . . 7
On pose w = e n . Déterminer tous les p € Z tels que wP soit réel.



1 Argument d’un complexe z non nul

Pour tous z, 72/ € C* :
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1 Argument d’un complexe z non nul

Pour tous z, 72/ € C* :
w arg(zZ') = arg(z) + arg(Z) [27] = arg(i/) =argz —argZ' [27]
z




1 Argument d’un complexe z non nul

Théoreme 1
Pour tous z, 72/ € C* :

w arg(zZ') = arg(z) + arg(Z) [27] = arg(g) =argz —argZ' [27]

SF 9 : calculer les puissances d’'un complexe

Exemple 3

Donner la forme algébrique de (1 + i)1°.



1 Argument d’un complexe z non nul

Pour tous z, 72/ € C* :
w arg(zZ') = arg(z) + arg(Z) [27] = arg(i/) =argz —argZ' [27]
z

Exercice 1

n n
sz < Z |z | avec égalité
k=1 k=1

Soient zi,...,z, € C*. Montrer que

ssi z1,...,2Z, Ont méme argument.



2 Exponentielle complexe

Définition 2
Soit z=x+ iy € C.

L’exponentielle de z est le complexe :  exp(z) b
er.

Par construction : = |exp(z)| = = arg(expz) =
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Soit z=x+ iy € C.
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2 Exponentielle complexe

exponentielle
Définition 2 réelle

Soit z=x+ iy € C.

L’exponentielle de z est le complexe :  exp(z) = e eV
(&ire

Par construction : = |exp(z)| = = arg(expz) =

19



2 Exponentielle complexe
exponentielle imaginaire
cosy +isiny

exponentielle
Définition 2 réelle
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(&ire
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2 Exponentielle complexe
exponentielle imaginaire
cosy +isiny

exponentielle
Définition 2 réelle

Soit z=x+ iy € C.

L’exponentielle de z est le complexe :  exp(z) = e el
(&ire

X

Par construction : = |exp(z)| = &* = arg(expz) = y [27]
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2 Exponentielle complexe
exponentielle imaginaire
cosy +isiny

exponentielle
Définition 2 réelle

Soit z=x+ iy € C.

L’exponentielle de z est le complexe :  exp(z) = e el
(&ire

X

Par construction : = |exp(z)| = &* = arg(expz) = y [27]

Exemple 4
Donner la forme algébrique de Z = exp(2 + i5).

19



2 Exponentielle complexe

Théoréme 2 : Relation fonctionnelle

Pour tous z,z/ € C :
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2 Exponentielle complexe

Théoréme 2 : Relation fonctionnelle

Pour tous z,z/ € C:  exp(z + Z') = exp(z) exp(Z’)
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2 Exponentielle complexe

Théoréme 2 : Relation fonctionnelle

Pour tous z,z/ € C:  exp(z + Z') = exp(z) exp(Z’)

Exercice 2

Démontrer la formule du théoreme.




2 Exponentielle complexe

Théoréme 2 : Relation fonctionnelle

Pour tous z,z/ € C:  exp(z + Z') = exp(z) exp(Z’)

SF 10 : Résoudre une équation de la forme exp(z) = a

Exemple 5

Résoudre les équations d'inconnue z € C :
a) exp(z) =V3+i b) exp(izm)=1—1i

20



3 Complément : dérivation des fonctions complexes

Cadre

= On considére une fonction ¢ : [ —
» Pourtouttel: (t)=u(t)+iv(t)

Dérivée

Intégrale

21
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partie

Cadre

= On considére une fonction @

» Pourtouttel: (t)= u(t) +i v(t)

Dérivée

Intégrale
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3 Complément : dérivation des fonctions complexes

partie
imaginaire

partie

Cadre

= On considére une fonction @

» Pourtouttel: (t)= u(t) +i v(t)

Dérivée
Si les fonctions u et v sont dérivables : ¢'(t) = u/'(t) + iv/(t)
pour tout t € /

Intégrale

b b b
Si u et v sont continues:/go(t)dtd;f/ u(t)dt+i/ v(t)dt

21
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