Suites
Niveau 2

Chapitre 12



[l Limite d’une suite

I Limite d'une suite



1 Suites convergentes

Définition 1
Soit u € RN, On dit que u est convergente s'il existe £ € R ayant la
propriété suivante :


https://www.desmos.com/calculator/dixuzm0bcf

1 Suites convergentes

Définition 1
Soit u € RN, On dit que u est convergente s'il existe £ € R ayant la
propriété suivante :

Ve >0, dnpgeN | Vn>ng, |up—¥| <e
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1 Suites convergentes

Définition 1
Soit u € RN, On dit que u est convergente s'il existe £ € R ayant la
propriété suivante :

Ve >0, dnpgeN | Vn>ng, |up—¥| <e

Explication

Pour tout € > 0,
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1 Suites convergentes

Définition 1
Soit u € RY. On dit que u est convergente s'il existe £ € R ayant la
propriété suivante :

Ve >0, dnpeN | Vn>ng, |up—¥ <e

aussi petit

soit-il
Explication

Pour tout € > 0,
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1 Suites convergentes

Définition 1
Soit u € RY. On dit que u est convergente s'il existe £ € R ayant la
propriété suivante :

Ve >0, dnpeN | Vn>ng, |up—¥ <e

aussi petit

soit-il
Explication

Pour tout € > 0, il existe un rang ng
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1 Suites convergentes

Définition 1
Soit u € RY. On dit que u est convergente s'il existe £ € R ayant la
propriété suivante :

Ve >0, dnpeN | Vn>ng, |up—¥ <e

aussi petit

soit-il
Explication

Pour tout € > 0, il existe un rang ng a partir duquel
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1 Suites convergentes

Définition 1
Soit u € RY. On dit que u est convergente s'il existe £ € R ayant la
propriété suivante :

Ve >0, dnpeN | Vn>ng, |up—¥ <e

aussi petit

soit-il
Explication
Pour tout € > 0, il existe un rang ng a partir duquel tous les u,
appartiennent a [{ — e, { + ¢].
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1 Suites convergentes

Définition 1

Soit u € RY. On dit que u est convergente s'| Un € [£—el+el)ia

propriété suivante : /

Ve>0, dnpeN | Vn>ng, |up—¥ <e

aussi petit

soit-il
Explication
Pour tout € > 0, il existe un rang ng a partir duquel tous les u,
appartiennent a [{ — e, { + ¢].
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1 Suites convergentes

Définition 1

Soit u € RY. On dit que u est convergente s'|Un € [l —€. L4 ¢]]5

propriété suivante : /

Ve>0, dnpeN | Vn>ng, |up—¥ <e

aussi petit

soit-il
Explication

Pour tout £ > 0, il existe un rang ng a partir duquel tous les u,
appartiennent a [( — e, ¢ + €.

“* Attention 4* ny dépend de ¢.
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1 Suites convergentes

Définition 1

Soit u € RYN. On dit que u est convergente s'| Un € [{—e.l+e])ia

propriété suivante : //

Ve >0, dnpeN | VYn>ng, |u,—¥ <e

exigence
de précision

E a cette exigence

2

Pour tout € > 0, il existe un rang ng a partir duquel tous les uj,
appartiennent a [( — e, £ + €].

[réponse adaptée]

“* Attention %* ng dépend de «.
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1 Suites convergentes

Définition 1

Soit u € RN. On dit que u est convergente s'( Un < [£—e,l+é

propriété suivante : /

Ve>0, 3dngeN | Vn>ng, |u,—/4|<e

exigence

réponse adaptée
de précision

a cette exigence
Pour tout € > 0, il existe un rang ng a partir duquel tous les u,
appartiennent a [( — e, ¢ + ¢].

“* Attention 4* ng dépend de ¢.

Exercice 1

1 Montrer quesi  u, — ¢ et v,— /¢ alors: wu,+v, =L+
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1 Suites convergentes

Définition 1

propriété suivante : /

Ve>0, dngeN | Vn>ny, |u,—/|<e

exigence

réponse adaptée
de précision

a cette exigence
Pour tout € > 0, il existe un rang ng a partir duquel tous les u,
appartiennent a [{ — e, { + ¢].

“* Attention 4* ny dépend de ¢.

Exercice 1

2 Démontrer le théoreme d'encadrement.
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2 Propriétés des suites convergentes

Théoréme 1

Soit u € RV,

= Dans le cas ol u est convergente, le réel ¢ de la définition est

unique, appelé limite de u et noté lim wu,.
n——+00

= Dans le cas contraire, on dit que u est divergente.

Exercice 2

Démontrer I'unicité de la limite en raisonnant par |'absurde.



2 Propriétés des suites convergentes

Toute suite convergente est :



2 Propriétés des suites convergentes

Toute suite convergente est : bornée.



2 Propriétés des suites convergentes

Toute suite convergente est : bornée.

“* Attention 4%

La réciproque est fausse par exemple :



2 Propriétés des suites convergentes

Théoréme 2

Toute suite convergente est : bornée.

“* Attention 4%

La réciproque est fausse par exemple : ((—1)”)nEN est bornée mais
ne converge pas

Exercice 3

1. Démontrer le théoreme précédent.



2 Propriétés des suites convergentes

Théoréme 2

Toute suite convergente est : bornée.

“* Attention 4
La réciproque est fausse par exemple : ((—1)”)nEN est bornée mais
ne converge pas

Exercice 3

1. Démontrer le théoreme précédent.
2. Montrer que si u est bornée et si v, — 0 alors :  wu,v, — 0




2 Propriétés des suites convergentes

Théoréme 2

Toute suite convergente est : bornée.

“* Attention 4
La réciproque est fausse par exemple : ((—1)”)nEN est bornée mais
ne converge pas

Exercice 3

1. Démontrer le théoreme précédent.
2. Montrer que si u est bornée et si v, — 0 alors :  wu,v, — 0
3. Montrer quesi  u, —{¢ et v,—/¢ alors: wupv, —




2 Propriétés des suites convergentes

Soit u € RN. Si u converge vers £ > 0, alors :



2 Propriétés des suites convergentes

Soit u € RN, Si u converge vers ¢ > 0, alors : u, > 0



2 Propriétés des suites convergentes

Soit u € RN, Si u converge vers £ > 0, alors : u, >0 APCR



2 Propriétés des suites convergentes
a partir
d'un certain rang

Soit u € RN, Si u converge vers £ > 0, alors : u, >0 APCR

Théoréme 3

Exercice 4

1. Démontrer ce théoreme.



2 Propriétés des suites convergentes
a partir
d'un certain rang

Théoreme 3
Soit u € RN, Si u converge vers £ > 0, alors : u, >0 APCR

Exercice 4

2. En déduire une démonstration du théoreme de passage aux
limites dans les inégalités larges.



3 Suites tendant vers l'infini

» Une suite u € RN tend vers +00 si :

» Une suite u € RN tend vers —oo si :



3 Suites tendant vers l'infini

» Une suite u € RN tend vers +00 si :
VAER, dnpeN | Vn>ng, up,>A

» Une suite u € RN tend vers —oo si :



3 Suites tendant vers l'infini

= Une suite u € RY tend vers +oo si :

VAER, dnpeN | Vn>ng, up,>A
= Une suite u € RY tend vers —co si :

VAER, 3dngeN | Vn>nyg, u,<A



3 Suites tendant vers l'infini

= Une suite u € RY tend vers +oo si :

VAER, dnpeN | Vn>ng, up,>A
= Une suite u € RY tend vers —co si :

VAER, 3dngeN | Vn>nyg, u,<A

Explication

Up — 400 si :



3 Suites tendant vers l'infini

= Une suite u € RY tend vers +oo si :

VAER, dnpeN | Vn>ng, up,>A
= Une suite u € RY tend vers —co si :

VAER, 3dngeN | Vn>nyg, u,<A

Explication

U, — +oo si : pour tout A € R,



3 Suites tendant vers l'infini

Définition 2
= Une suite u € RY tend vers +oo si :

VAER, dnpeN | Vn>ng, up,>A
= Une suite u € RY tend vers —co si :

VAER, 3dngeN | Vn>nyg, u,<A

aussi grand
Explication soit-il

U, — +oo si : pour tout A € R,



3 Suites tendant vers l'infini

Définition 2
= Une suite u € RY tend vers +oo si :

VAER, dnpeN | Vn>ng, up,>A
= Une suite u € RY tend vers —co si :

VAER, 3dngeN | Vn>nyg, u,<A

aussi grand qui dépend
Explication soit-il de A

up, — +oo si : pour tout A € R, il existe un rang ng,



3 Suites tendant vers l'infini

Définition 2

= Une suite u € RN tend vers +00 si :

VAER, dnpeN | Vn>ng, up,>A
= Une suite u € RN tend vers —co si :

VAER, 3dngeN | Vn>nyg, u,<A

aussi grand qui dépend
Explication soit-il de A

up, — +oo si : pour tout A € R, il existe un rang ng, a partir

duquel tous les u, appartiennent a [A, +ool.



3 Suites tendant vers l'infini

Définition 2
= Une suite u € RY tend vers +oo si :

VAER, dnpeN | Vn>ng, up,>A
= Une suite u € RY tend vers —co si :

VAER, 3dngeN | Vn>nyg, u,<A

aussi grand
soit-il

qui dépend
de A

up, — +oo si : pour tout A € R, il existe un rang ng, a partir

Explication

duquel tous les u, appartiennent a [A, +ool.

Exercice 5

1. Démontrer le théoreme de minoration.



3 Suites tendant vers l'infini

Définition 2
= Une suite u € RN tend vers +00 si :
VAER, dngeN | VYn>ng, up,>A
= Une suite u € RY tend vers —co si :
VAER, dnpeN | Vn>nyg, u,<A
aussi grand
soit-il

qui dépend
de A

U, — +oo si : pour tout A € R, il existe un rang ng, a partir

Explication

duquel tous les u, appartiennent a [A, +ool.

Exercice 5

2 Démontrer qu'une suite croissante non majorée tend vers +o0.



3 Suites tendant vers l'infini

Définition 2

= Une suite u € RN tend vers +o0 si :

VAER, dngeN | Vn>ng, up,>A
= Une suite u € RN tend vers —co si :

VAER, dngeN | Vn>nyg, u, <A

aussi grand
soit-il

qui dépend

de A
u, — +oo si : pour tout A € R, il existe un rang ng, a partir
duquel tous les u, appartiennent a [A, +ool.

Explication

Exercice 5

3 Démontrer quesi u, — 0T alors: L
n—+o00 Un p—+oo

—+00.



3 Suites tendant vers l'infini

Définition 2

= Une suite u € RN tend vers +00 si :

VAER, dnpeN | Vn>ng, up,>A
= Une suite u € RN tend vers —co si :

VAER, 3dngeN | Vn>nyg, u,<A

aussi grand
soit-il

qui dépend

de A
up, — +oo si : pour tout A € R, il existe un rang ng, a partir
duquel tous les u, appartiennent a [A, +ool.

Explication

Exemple 1 : “* Attention %

Montrer qu’une suite non bornée ne tend pas forcément vers +oo.



4 Tableau récapitulatif

Suite S

convergente divergente

Limite ?




4 Tableau récapitulatif

Suite Suite
convergente divergente
(B Il Limite finie




4 Tableau récapitulatif

Suite Suite
convergente divergente
(B Il Limite finie Limite o0




4 Tableau récapitulatif

Suite Suite
convergente divergente
(MGl Limite finie Limite +o00 Pas de limite




4 Tableau récapitulatif

Suite S

convergente divergente

Limite finie

Limite ? Limite =00 Pas de limite

Exercice 6 : Lemme de Cesaro

On suppose que u, — £ € R.
n——+o00

1 n
Pour tout n > 1, on pose : v, = quk.
n
k=1

Montrer : v, — ¥
n—-+o0o



M Suites extraites

I Suites extraites



Définition 1
Soient u, v € RY. On dit que v est une sous-suite ou suite extraite
de u si:



1 Définition

Définition 1
Soient u, v € RY. On dit que v est une sous-suite ou suite extraite
de u si : il existe ¢ : N — N strictement croissante, telle que :

VneN, v, = Uyp(n)



1 Définition La suite des indices choisis

Définition 1
Soient u, v € RN. OA dit que v est une sous-suite ou suite extraite
de u si : il existe ¢ : N — N strictement croissante, telle que :

VneN, v, = Uyp(n)



1 Définition La suite des indices choisis

Définition 1
Soient u, v € RN. OA dit que v est une sous-suite ou suite extraite
de u si : il existe ¢ : N — N strictement croissante, telle que :

VneN, v, = Uyp(n)

Remarque

Dit autrement : v =



1 Définition La suite des indices choisis

Définition 1
Soient u, v € RN. OA dit que v est une sous-suite ou suite extraite
de u si : il existe ¢ : N — N strictement croissante, telle que :

VneN, v, = Uyp(n)

Remarque

Dit autrement : V=uoyp



1 Définition

La suite des indices choisis

Définition 1
Soient u, v € RY. On4it que v est une sous-suite ou suite extraite
de u si : il existe ¢ : N — N strictement croissante, telle que :

VneN, v, = Uyp(n)

Dit autrement : V=uop
Exemple 1

1. Montrer que les suites constantes v = (1),en et w = (—1)pen
sont des suites extraites de u = ((—1)") ..
neN



1 Définition

La suite des indices choisis
Définition 1

Soient u, v € RY. On it que v est une sous-suite ou suite extraite
de u si : il existe ¢ : N — N strictement croissante, telle que :

VneN, vp = uyp

Dit autrement : V=uop
Exemple 1

2. Montrer que v = (4n?),cy et w = (4"),cn sont des suites
extraites de la suite u = (n?),en.



1 Définition

Soit ¢ : N — N, strictement croissante.
Pour tout n € N :




1 Définition

Soit ¢ : N — N, strictement croissante.
Pourtout ne N: ¢(n) > n




Soit ¢ : N — N, strictement croissante.
Pourtout ne N: ¢(n) > n

Exercice 1

Démontrer le théoreme.




2 Limite et suites extraites

Siu, — £, alors:
n——-00



2 Limite et suites extraites

Si up, — £, alors : toutes les sous-suites de u tendent vers /.
n——o00



2 Limite et suites extraites

Théoréme 2

Siu, — £, alors : toutes les sous-suites de u tendent vers /.
n——o00

11



2 Limite et suites extraites

Théoréme 2

Siu, — £, alors : toutes les sous-suites de u tendent vers /.
n——o00

SF 9 : Prouver qu’une suite n’a pas de limite

Exemple 2 : G

n
Montrer que la suite u = (sin(—;r L 5
n

s

)) n'a pas de limite.
neN*

11


https://www.desmos.com/calculator/k7fv9s3hoh

2 Limite et suites extraites

Théoréme 2

Siu, — £, alors : toutes les sous-suites de u tendent vers /.
n——o00

Exercice 2 : Suites géométriques : cas divergeant

a) Montrer que la suite ((—1)") _ n'a pas de limite

neN
b) Soit g < —1. Montrer que la suite (q")pen n'a pas de limite

11



2 Limite et suites extraites

Si: w, — f et u — ¢ alors: u, — /.
i n—-+o00 et n——-+o00 n n—--00




2 Limite et suites extraites

Si: w, — f et u — ¢ alors: u, — /.
i n—-+o00 et n——-+o00 n n—--00




3 Deux applications classiques

Si u, — £, alors : toutes les sous-suites de u tendent vers /.

n——-00
Théoreme 3
Si: w, — ¢ et wpy1 — ¢ alors: u, — /L
n——-00 n——-00 n—-+4o00

1
Exemple 4 : Suite harmonique H, = Z; pour tout n > 1

1.a) Montrer que pour tout n € N* :  H, — H, > %
b) En déduire : H, — +o0
2. Pour n € N*, on pose u, = H, —Innet v, = H, — In(n+ 1).
Montrer que u et v sont adjacentes.



3 Deux applications classiques

Si u, — £, alors : toutes les sous-suites de u tendent vers /.

n——-00

Théoreme 3
Si: w, — ¢ et wpy1 — ¢ alors: u, — /L
n——-00 n——-00 n—-+4o00

n_(_1)
Exemple 5 : Suite harmonique alternée (S,) = (Z ())
n>1

a) Prouver que (S2p) et (S2n+1) sont adjacentes.
b) Etudier la nature de la suite (Sp)nen--



4 Le théoréme de Bolzano-Weierstrass

Toute suite bornée :



https://www.desmos.com/calculator/6wezlpjhjg

4 Le théoréme de Bolzano-Weierstrass

Toute suite bornée : possede une sous-suite convergente.



https://www.desmos.com/calculator/6wezlpjhjg

4 Le théoréme de Bolzano-Weierstrass

Théoréme 4

Toute suite bornée : possede une sous-suite convergente.

Exercice 3 : Principe de démonstration par dichotomie @Fiie

Soit u € RY une suite bornée et a,beRtelsque: a<u,<b
pour tout n € N. Montrer qu'il existe deux suites (a,) et (b,) telles
que pour tout n € N :
= I, = [an, bp] posséde une infinité de termes de la suite (u,)
b—a
2n

lbn—an:

14
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Il Complément : extension aux
suites complexes

m Complément : extension aux suites complexes

115)



Extension aux suites complexes

Une suite u € CN est dite bornée si il existe M € R, tel que :

VneN, |u, <M

Définition 2
Soit u € CN. On dit que u est convergente s'il existe £ € C ayant la
propriété suivante :

Ve >0, dnpeN, Vn>ng, |up—/ <e¢



Extension aux suites complexes

Définition 1

Une suite u € CN est dite bornée si il existe M € R, tel que :

VneN, |u, <M

Définition 2

Soit u € CN. On dit que u est convergente s'il existe £ € C ayant la
propriété suivante :

Ve >0, dngeN, Vn>ng, |up—/ <e¢

RoEm

16



Extension aux suites complexes

Définition 1

Une suite u € CN est dite bornée si il existe M € R, tel que :

VneN, |u, <M

Définition 2

Soit u € CN. On dit que u est convergente s'il existe £ € C ayant la
propriété suivante :

Ve >0, dngeN, Vn>ng, |up—/ <e¢

RoEm

Exemple 1
Soit g€ C. Si |g| < 1,alors: ¢q" — 0.

n—-+o00

16



Extension aux suites complexes

Soit u € CN et soit £ € C. Il y a équivalence entre :

1. wu,—/
2. Reu,—Rel e Imu,— Im/.



Extension aux suites complexes

Soit u € CN et soit £ € C. Il y a équivalence entre :

1. wu,—/
2. Reu,—Rel e Imu,— Im/.

Exemple 2
Etudier la convergence de la suite complexe définie par ug € C et :

2u, — 30
VnEN, upg = "



Extension aux suites complexes




Extension aux suites complexes

Unicité de la limite

Toute suite convergente est
bornée

Opérations sur les limites

Suites extraites

Théoreme de
Bolzano-Weierstrass




Extension aux suites complexes

Unicité de la limite Notion de limite infinie
Toute suite convergente est Théoreme de passage aux
bornée limites dans les inégalités
Opérations sur les limites Théoremes de comparaison
Suites extraites Théoréme de
Théoreme de la limite monotone
Bolzano-Weierstrass Théoreme des suites adjacentes




Extension aux suites complexes

Unicité de la limite Notion de limite infinie
Toute suite convergente est Théoreme de passage aux
bornée limites dans les inégalités
Opérations sur les limites Théoremes de comparaison
Suites extraites Théoréme de
Théoreme de la limite monotone
Bolzano-Weierstrass Théoreme des suites adjacentes

Exercice 1

Démontrer le théoreme de Bolzano-Weierstrass dans le cas d'une
suite complexe.



Borne supérieure, borne
inférieure d’une partie de R

Borne supérieure, borne inférieure d'une partie de R

19



1 Rappel : plus grand/plus petit élément pour I'ordre naturel

Rappel

= A est une partie de R

20



1 Rappel : plus grand/plus petit élément pour I'ordre naturel

Rappel

= A est une partie de R

= On appelle plus grand élément (P.G.E.) de A tout majorant de
A qui appartient 3 A

20



1 Rappel : plus grand/plus petit élément pour I'ordre naturel

Un réel M tel que :
Rappel

Vae A, a<M
= A est une partie de R \

= On appelle plus grand élément (P.G.E.) de A tout majorant de
A qui appartient 3 A

20



1 Rappel : plus grand/plus petit élément pour I'ordre naturel

Un réel M tel que :
Rappel

Vae A, a<M
= A est une partie de R \

= On appelle plus grand élément (P.G.E.) de A tout majorant de
A qui appartient 3 A

= On définit de méme la notion de plus petit élément (P.P.E.).

1
Exemple 1 : A{; neN*}
n

a) A est-elle majorée ? minorée ?
b) A posséde-t-elle un plus grand/petit élément?

20



1 Rappel : plus grand/plus petit élément pour I'ordre naturel

Théoreme 1 : Cas des parties de N

i) Toute partie non vide de N possede :

ii) Toute partie non vide et majorée de N possede :

21



1 Rappel : plus grand/plus petit élément pour I'ordre naturel

(Plus petit éIémentJ

Théoreme 1 : Cas des parties de N

i) Toute partie non vide de N posséde : un P.P.E.

ii) Toute partie non vide et majorée de N possede :

21



1 Rappel : plus grand/plus petit élément pour I'ordre naturel

(Plus petit éIémentJ

Théoreme 1 : Cas des parties de N

i) Toute partie non vide de N posséde : un P.P.E.

ii) Toute partie non vide et majorée de N posseéde : un P.G.E.

21



1 Rappel : plus grand/plus petit élément pour I'ordre naturel

(Plus petit élément]

Théoreme 1 : Cas des parties de N

i) Toute partie non vide de N posséde : un P.P.E.

ii) Toute partie non vide et majorée de N posseéde : un P.G.E.

Exercice 1

1. Soient a, b € N*. A I'aide du théoreme précédent, justifier
I'existence de: aAb et aVb.

2. Soit a € N* et p € IP. Justifier I'existence de v,(a).

21



1 Rappel : plus grand/plus petit élément pour I'ordre naturel

(Plus petit élément]

Théoreme 1 : Cas des parties de N

i) Toute partie non vide de N posséde : un P.P.E.

ii) Toute partie non vide et majorée de N posseéde : un P.G.E.

Exercice 1

1. Soient a, b € N*. A I'aide du théoreme précédent, justifier
I'existence de: aAb et aVb.

2. Soit a € N* et p € IP. Justifier I'existence de v,(a).

“* Attention %* Ce théoréme est faux pour une partie de R.
Par exemple :

21



1 Rappel : plus grand/plus petit élément pour I'ordre naturel

(Plus petit élément]

Théoreme 1 : Cas des parties de N

i) Toute partie non vide de N posséde : un P.P.E.

ii) Toute partie non vide et majorée de N posseéde : un P.G.E.

Exercice 1

1. Soient a, b € N*. A I'aide du théoreme précédent, justifier
I'existence de: aAb et aVb.

2. Soit a € N* et p € IP. Justifier I'existence de v,(a).

“* Attention %* Ce théoréme est faux pour une partie de R.
Par exemple : [0, 1] est majorée mais n'a pas de P.G.E.
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2 Borne supérieure/inférieure

Théoreme 2 : Propriété de la borne sup

= Toute partie non vide et majorée de R possede :

= Toute partie non vide et minorée de R possede :
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Théoreme 2 : Propriété de la borne sup
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= Toute partie non vide et minorée de R possede :
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2 Borne supérieure/inférieure

Théoreme 2 : Propriété de la borne sup

= Toute partie non vide et majorée de R posséde : une borne
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2 Borne supérieure/inférieure

Théoréeme 2 : Propriété de la borne supérieure

= Toute partie non vide et majorée de R posséde : une borne
supérieure.

= Toute partie non vide et minorée de R possede : une borne
inférieure.

Exercice 2 : Théoréme de la limite monotone

Soit u € RN une suite croissante et majorée.
Démontrer que u converge.
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2 Borne supérieure/inférieure

Théoréeme 2 : Propriété de la borne supérieure

= Toute partie non vide et majorée de R posséde : une borne
supérieure.

= Toute partie non vide et minorée de R possede : une borne
inférieure.

Exemple 3

Soit / un intervalle non vide.
Pour toute fonction bornée f : | — R, on pose : ||f||c = sup |f(x)]|
x€el

Soit f,g : | — R, bornées et \ € R*. Etablir :
a) [If +&lloo < [Iflloo + ll& oo
b) [[Aflloo = [A] X [l
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2 Borne supérieure/inférieure

Théoréme 3 : Caractérisation des intervalles

Soit / une partie non vide de R. Il y a équivalence entre :

i) I est un intervalle de R.
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2 Borne supérieure/inférieure

Théoréme 3 : Caractérisation des intervalles

Soit / une partie non vide de R. Il y a équivalence entre :

i) I est un intervalle de R.

i) Pour tous x,y € [ tels que x <y : [x,y] C

| possede les valeurs intermédiaires
entre x et y
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3 Borne supérieure et suites

Soit M un majorant de A. Il y a équivalence entre :
i) M=supA
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3 Borne supérieure et suites

Soit M un majorant de A. Il y a équivalence entre :
i) M=supA

ii) il existe une suite (a,) d'éléments de At.q. : a, — M.
n——+00

Exercice 3

Démontrer cette équivalence




3 Borne supérieure et suites

Soit M un majorant de A. Il y a équivalence entre :
i) M=supA

ii) il existe une suite (a,) d'éléments de At.q. : a, — M.
n——+00

Exercice 4 : Borne sup « infinie »

Montrer que si A n’est pas majorée, alors il existe une suite
d’éléments de A de limite +o0




3 Borne supérieure et suites

Soit M un majorant de A. Il y a équivalence entre :
i) M=supA

ii) il existe une suite (a,) d'éléments de At.q. : a, — M.
n—+00

SF 13 : Utiliser les suites pour montrer que M = sup A

= On montre que M majore A.

= On construit une suite (a,) € A t.q. : 3, — M.
n——+o00

Exemple 4 : Déterminer les bornes supérieures et inférieures

a) 1=1[2,3] b) A:{ ;p,qu*}

2P +q



3 Borne supérieure et suites

Soit M un majorant de A. Il y a équivalence entre :

i) M=supA

ii) il existe une suite (a,) d'éléments de At.q. : a, — M.
n——+00

Exemple 5

Soit u € RY, bornée. Pour n € N on pose :  a, = inf {ux; k > n}.
Montrer que (a,) est croissante.



4 Droite achevée R

Notation

= Onpose: R= RU{—o00,+00}
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= Onpose: R= RU{—0o0,Foo}
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Approximations d’'un nombre réel

Approximations d’'un nombre réel
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= Approcher un réel x par :
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Objectif

= Approcher un réel x par :

1. des décimaux
2. des rationnels

Rappel

La partie entiére de x est le plus grand entier inférieur ou égal a x

Inégalités a retenir

-[LXJ§X<LXJ+1] I[X71<LXJ§X]
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1 Approximation décimale

Inégalités a retenir

[ <x< | <|x] < |

Rappel

Un nombre décimal est un réel de la forme :

Notation

L'ensemble des nombres décimaux est noté :
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1 Approximation décimale

Inégalités a retenir
(== ) ===
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1 Approximation décimale

[« Nombre fini de chifFres}

Rappel apres la virgule »

- , p = .
Un nombre décimal est un réel de la forme : 107 pour certains

pEZetneN.

Notation

L'ensemble des nombres décimaux est noté : D

Exemple 1

On prend x = 7.

1 10 1
a) Calculer: y; = LIOC;(J et L)iJO+

b) Définir y» et z, pour que y» = 3.14 et zp = 3.15

zZ1 =
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= L'approximation décimale de x a 10" pres par défaut est le
décimal :
s |'approximation décimale de x a 10~" pres par exces est le

décimal :
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= L'approximation décimale de x a 10" pres par défaut est le
|10"x |

107
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décimal :  y, =

décimal :
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Plo_ur tout n € N : 2 3!
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= L'approximation décimale de x a 10" pres par défaut est le
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décimal :  y, = 10
s |'approximation décimale de x a 10~" pres par exces est le
10" 1
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Pour taut,n e N - o 3,
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= L'approximation décimale de x a 10" pres par défaut est le

L. _ |10"x |
décimal :  y, = 10
s |'approximation décimale de x a 10~" pres par exces est le
10" 1
décimal :  z, = 110%] +1 (: Yn + )
107" 10

. 1
PRup ot n e 2. 2y = =
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= L'approximation décimale de x a 10" pres par défaut est le

L. _ |10"x |
décimal :  y, = 10
s |'approximation décimale de x a 10~" pres par exces est le
10" 1
décimal :  z, = 110%] +1 (: Yn + )
107" 10

: 1
PRup ot n e 2. 2y = =
1
< —x <
0<z,— x< 10
1
0<x—yn<

= 1
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= L'approximation décimale de x a 10~" pres par défaut est le

L. _ |10"x |
décimal :  y, = 10
s |'approximation décimale de x a 10~" pres par exces est le
10" 1
décimal :  z, = ¢ (: Yn+ )
107" 10

. 1
oottt 2z, -y = o
1
0<z,—x<
Z X_].O"
1
O<X_le§10n

Exercice 1

Démontrer le théoréme précédent.
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= L'approximation décimale de x a 10" pres par défaut est le

L. _ |10"x |
décimal :  y, = 10
s |'approximation décimale de x a 10~" pres par exces est le
10" 1
décimal :  z, = 110%] +1 (: Yn + )
107" 10

Théoréeme 1

: 1
Plo.u%cogtxnégﬁ 2. Zp—Yn= o 3.
0< < !
Zn— X
R 0
0< < !
X_
=X =900
Conséquence

Les suites (y,) et (z,) convergent vers x.
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= L'approximation décimale de x a 10~" pres par défaut est le

L. _ |10"x |
décimal :  y, = 10
s |'approximation décimale de x a 10~" pres par exces est le
10" 1
décimal :  z, = ¢ (: Yn+ )
107" 10

. 1
oottt 2z, -y = o
1
0<z,—x<
Z X_].O"
1
O<X_le§10n

Exercice 2

Montrer que les suites (y,) et (z,) sont adjacentes.
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2 Approximation par des rationnels

Rappels

. p P
1. Les nombres rationnels sont les réels de la forme : — pour
q

certains p € Z et g € N*.
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Rappels

. p P
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. p P
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2 Approximation par des rationnels

Rappels

1. Les nombres rationnels sont les réels de la forme : P pour
q
certains p € Z et g € N*.
2. On dispose des inclusions suivantes : Z C D € Q C R.

3. Les nombres irrationnels sont les éléments de : R\ Q.

R
Théoréme 2 Q est dense dans

1. Tout nombre réel est : limite d'une suite de rationnels
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2 Approximation par des rationnels

Rappels

. p P
1. Les nombres rationnels sont les réels de la forme : — pour
q

certains p € Z et g € N*.
. On dispose des inclusions suivantes : Z C D € Q C R.

w N

. Les nombres irrationnels sont les éléments de : R \ Q.

Q est dense dans R

Théoréme 2

1. Tout nombre réel est : limite d'une suite de rationnels

2. Tout intervalle ouvert non vide posséde un rationnel i.e. :
pour tous a,b € Rtelsquea<b: QnNla,b[# 2.

Exercice 3

Démontrer le théoréme précédent.
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2 Approximation par des rationnels
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2 Approximation par des rationnels

Tout nombre réel est : limite d'une suite d’irrationnels.

R\ Q est lui aussi

Démontrer le théoréme précédent. dense dans R
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2 Approximation par des rationnels

Soit A € Z(R). Il y a équivalence entre :
i) Tout réel est limite d'une suite d'éléments de A.

ii) Tout intervalle ouvert non vide posséde un élément de A.



2 Approximation par des rationnels

A est dense dans R

Théoréme 4

Soit A € Z(R). Il y a équivalence entre :

i) Tout réel est limite d'une suite d'éléments de A.

ii) Tout intervalle ouvert non vide posséde un élément de A.
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2 Approximation par des rationnels

A est dense dans R

Théoréme 4

Soit A € Z(R). Il y a équivalence entre :

i) Tout réel est limite d'une suite d'éléments de A.

ii) Tout intervalle ouvert non vide posséde un élément de A.

Exercice 5

Démontrer I'implication ii) = i) du théoréme.
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