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1 Suites convergentes

Définition 1
Soit u ∈ RN. On dit que u est convergente s’il existe ℓ ∈ R ayant la
propriété suivante :

∀ε > 0, ∃n0 ∈ N | ∀n ≥ n0, |un − ℓ| ≤ ε

Explication

Pour tout ε > 0, il existe un rang n0 à partir duquel tous les un
appartiennent à [ℓ − ε , ℓ + ε].

j Attention j n0 dépend de ε. Figure

un ∈ [ℓ − ε , ℓ + ε]

exigence
de précision

réponse adaptée
à cette exigence

Exercice 1

2
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1 Montrer que si un → ℓ et vn → ℓ′ alors : un + vn → ℓ + ℓ′
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1 Suites convergentes

Définition 1
Soit u ∈ RN. On dit que u est convergente s’il existe ℓ ∈ R ayant la
propriété suivante :
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Explication
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j Attention j n0 dépend de ε. Figure

un ∈ [ℓ − ε , ℓ + ε]
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de précision

réponse adaptée
à cette exigence
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2 Démontrer le théorème d’encadrement.
2
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2 Propriétés des suites convergentes

Théorème 1
Soit u ∈ RN.
• Dans le cas où u est convergente, le réel ℓ de la définition est

unique, appelé limite de u et noté lim
n→+∞

un.
• Dans le cas contraire, on dit que u est divergente.

Exercice 2
Démontrer l’unicité de la limite en raisonnant par l’absurde.
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2 Propriétés des suites convergentes

Théorème 2
Toute suite convergente est :

bornée.

j Attention j

La réciproque est fausse par exemple :

(
(−1)n)

n∈N est bornée mais
ne converge pas

Exercice 3

1. Démontrer le théorème précédent.

2. Montrer que si u est bornée et si vn → 0 alors : unvn → 0
3. Montrer que si un → ℓ et vn → ℓ′ alors : unvn → ℓℓ′

4
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2 Propriétés des suites convergentes

Théorème 3
Soit u ∈ RN. Si u converge vers ℓ > 0, alors :

un > 0 APCR

Exercice 4

1. Démontrer ce théorème.
2. En déduire une démonstration du théorème de passage aux

limites dans les inégalités larges.

à partir
d’un certain rang
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3 Suites tendant vers l’infini

Définition 2

• Une suite u ∈ RN tend vers +∞ si :

∀A ∈ R, ∃n0 ∈ N | ∀n ≥ n0, un ≥ A

• Une suite u ∈ RN tend vers −∞ si :

∀A ∈ R, ∃n0 ∈ N | ∀n ≥ n0, un ≤ A

Explication
un → +∞ si :

pour tout A ∈ R, il existe un rang n0, à partir
duquel tous les un appartiennent à [A , +∞[.

aussi grand
soit-il

qui dépend
de A

6
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Exercice 5
1. Démontrer le théorème de minoration.
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3 Suites tendant vers l’infini
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2 Démontrer qu’une suite croissante non majorée tend vers +∞.
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3 Suites tendant vers l’infini

Définition 2

• Une suite u ∈ RN tend vers +∞ si :
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duquel tous les un appartiennent à [A , +∞[.
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de A

Exemple 1 : j Attention j

Montrer qu’une suite non bornée ne tend pas forcément vers ±∞.
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4 Tableau récapitulatif

Suite Suite

convergente divergente

Limite?

Limite finie Limite ±∞ Pas de limite

Exercice 6 : Lemme de Cesàro
On suppose que un −→

n→+∞
ℓ ∈ R.

Pour tout n ≥ 1, on pose : vn = 1
n

n∑
k=1

uk .

Montrer : vn −→
n→+∞

ℓ

7
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II Suites extraites

I Limite d’une suite

II Suites extraites
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1 Définition

Définition 1
Soient u, v ∈ RN. On dit que v est une sous-suite ou suite extraite
de u si :

il existe φ : N → N strictement croissante, telle que :

∀n ∈ N, vn = uφ(n)

Remarque
Dit autrement : v =

u ◦ φ

Exemple 1

La suite des indices choisis
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1 Définition

Définition 1
Soient u, v ∈ RN. On dit que v est une sous-suite ou suite extraite
de u si : il existe φ : N → N strictement croissante, telle que :

∀n ∈ N, vn = uφ(n)

Remarque
Dit autrement : v = u ◦ φ

Exemple 1

1. Montrer que les suites constantes v = (1)n∈N et w = (−1)n∈N
sont des suites extraites de u =

(
(−1)n)

n∈N.

La suite des indices choisis
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1 Définition

Définition 1
Soient u, v ∈ RN. On dit que v est une sous-suite ou suite extraite
de u si : il existe φ : N → N strictement croissante, telle que :

∀n ∈ N, vn = uφ(n)

Remarque
Dit autrement : v = u ◦ φ

Exemple 1

2. Montrer que v = (4n2)n∈N et w = (4n)n∈N sont des suites
extraites de la suite u = (n2)n∈N.

La suite des indices choisis
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1 Définition

Théorème 1
Soit φ : N → N, strictement croissante.
Pour tout n ∈ N :

φ(n) ≥ n

Exercice 1
Démontrer le théorème.
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2 Limite et suites extraites

Théorème 2
Si un −→

n→+∞
ℓ , alors :

toutes les sous-suites de u tendent vers ℓ.

finie ou non

11
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2 Limite et suites extraites

Théorème 2
Si un −→

n→+∞
ℓ , alors : toutes les sous-suites de u tendent vers ℓ.

SF 9 : Prouver qu’une suite n’a pas de limite

Exemple 2 : Figure

Montrer que la suite u =
(
sin
(nπ

2 + π

2n
))

n∈N∗
n’a pas de limite.

finie ou non

11
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2 Limite et suites extraites

Théorème 2
Si un −→

n→+∞
ℓ , alors : toutes les sous-suites de u tendent vers ℓ.

Exercice 2 : Suites géométriques : cas divergeant
a) Montrer que la suite

(
(−1)n)

n∈N n’a pas de limite
b) Soit q < −1. Montrer que la suite (qn)n∈N n’a pas de limite

finie ou non

11



2 Limite et suites extraites

Théorème 2
Si un −→

n→+∞
ℓ , alors :

toutes les sous-suites de u tendent vers ℓ.

Théorème 3
Si : u2n −→

n→+∞
ℓ et u2n+1 −→

n→+∞
ℓ alors : un −→

n→+∞
ℓ.

Exemple 3 : Suite harmonique : Hn =
n∑

k=1

1
k pour tout n ≥ 1

1.a) Montrer que pour tout n ∈ N∗ : H2n − Hn ≥ 1
2

b) En déduire : Hn → +∞
2. Pour n ∈ N∗, on pose un = Hn − ln n et vn = Hn − ln(n + 1).

Montrer que u et v sont adjacentes.

12
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3 Deux applications classiques

Théorème 2
Si un −→

n→+∞
ℓ , alors : toutes les sous-suites de u tendent vers ℓ.

Théorème 3
Si : u2n −→

n→+∞
ℓ et u2n+1 −→

n→+∞
ℓ alors : un −→

n→+∞
ℓ.

Exemple 4 : Suite harmonique Hn =
n∑

k=1

1
k pour tout n ≥ 1

1.a) Montrer que pour tout n ∈ N∗ : H2n − Hn ≥ 1
2

b) En déduire : Hn → +∞
2. Pour n ∈ N∗, on pose un = Hn − ln n et vn = Hn − ln(n + 1).

Montrer que u et v sont adjacentes.

13



3 Deux applications classiques

Théorème 2
Si un −→

n→+∞
ℓ , alors : toutes les sous-suites de u tendent vers ℓ.

Théorème 3
Si : u2n −→

n→+∞
ℓ et u2n+1 −→

n→+∞
ℓ alors : un −→

n→+∞
ℓ.

Exemple 5 : Suite harmonique alternée (Sn) =
( n∑

k=1

(−1)k

k

)
n≥1

a) Prouver que (S2n) et (S2n+1) sont adjacentes.
b) Etudier la nature de la suite (Sn)n∈N∗ .

13



4 Le théorème de Bolzano-Weierstrass

Théorème 4
Toute suite bornée :

possède une sous-suite convergente.

Exercice 3 : Principe de démonstration par dichotomie Figure

Soit u ∈ RN une suite bornée et a, b ∈ R tels que : a ≤ un ≤ b
pour tout n ∈ N. Montrer qu’il existe deux suites (an) et (bn) telles
que pour tout n ∈ N :
• In = [an , bn] possède une infinité de termes de la suite (un)

• bn − an = b − a
2n

14
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III Complément : extension aux
suites complexes

I Limite d’une suite

II Suites extraites

III Complément : extension aux suites complexes

IV Borne supérieure, borne inférieure d’une partie de R

V Approximations d’un nombre réel
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Extension aux suites complexes

Définition 1
Une suite u ∈ CN est dite bornée si il existe M ∈ R+ tel que :

∀n ∈ N, |un| ≤ M

Définition 2
Soit u ∈ CN. On dit que u est convergente s’il existe ℓ ∈ C ayant la
propriété suivante :

∀ε > 0, ∃n0 ∈ N, ∀n ≥ n0, |un − ℓ| ≤ ε

Exemple 1
Soit q ∈ C. Si |q| < 1, alors : qn −→

n→+∞
0.

Module

Module
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Extension aux suites complexes

Théorème 1
Soit u ∈ CN et soit ℓ ∈ C. Il y a équivalence entre :
1. un → ℓ

2. Re un → Re ℓ et Im un → Im ℓ.

Exemple 2
Etudier la convergence de la suite complexe définie par u0 ∈ C et :

∀n ∈ N, un+1 = 2un − 3un
5
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Extension aux suites complexes

Ce qui reste

Unicité de la limite
Toute suite convergente est

bornée
Opérations sur les limites

Suites extraites
Théorème de

Bolzano-Weierstrass

Ce qui ne reste pas

Notion de limite infinie
Théorème de passage aux
limites dans les inégalités

Théorèmes de comparaison
Théorème de

la limite monotone
Théorème des suites adjacentes

Exercice 1
Démontrer le théorème de Bolzano-Weierstrass dans le cas d’une
suite complexe.
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IV Borne supérieure, borne
inférieure d’une partie de R

I Limite d’une suite

II Suites extraites

III Complément : extension aux suites complexes

IV Borne supérieure, borne inférieure d’une partie de R

V Approximations d’un nombre réel
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1 Rappel : plus grand/plus petit élément pour l’ordre naturel

Rappel

• A est une partie de R

• On appelle plus grand élément (P.G.E.) de A tout majorant de
A qui appartient à A

• On définit de même la notion de plus petit élément (P.P.E.).

Exemple 1 : A =
{1

n ; n ∈ N∗
}

a) A est-elle majorée ? minorée ?
b) A possède-t-elle un plus grand/petit élément ?

Un réel M tel que :
∀a ∈ A, a ≤ M

20
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1 Rappel : plus grand/plus petit élément pour l’ordre naturel

Théorème 1 : Cas des parties de N

i) Toute partie non vide de N possède :

un P.P.E.

ii) Toute partie non vide et majorée de N possède :

un P.G.E.

Exercice 1

1. Soient a, b ∈ N∗. A l’aide du théorème précédent, justifier
l’existence de : a ∧ b et a ∨ b.

2. Soit a ∈ N∗ et p ∈ P. Justifier l’existence de vp(a).

j Attention j Ce théorème est faux pour une partie de R.
Par exemple :

[0 , 1[ est majorée mais n’a pas de P.G.E.

Plus petit élément
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2 Borne supérieure/inférieure

Définition 1

• La borne supérieure de A est, s’il existe :

le plus petit des
majorants de A, alors noté sup A.

• La borne inférieure de A est, s’il existe :

le plus grand des
minorants de A, alors noté inf A.

Remarque
Si A possède un plus grand élément M, alors :

M = sup A

j Attention j En général : Borne sup ̸= P.G.E

Exemple 2
Déterminer les bornes supérieures et inférieures de :
a) I = [2 , 3[. b) A =

{1
n ; n ∈ N∗

}

22
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2 Borne supérieure/inférieure

Théorème 2 : Propriété de la borne supérieure

• Toute partie non vide et majorée de R possède :

une borne
supérieure.

• Toute partie non vide et minorée de R possède :

une borne
inférieure.
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2 Borne supérieure/inférieure

Théorème 2 : Propriété de la borne supérieure

• Toute partie non vide et majorée de R possède : une borne
supérieure.

• Toute partie non vide et minorée de R possède : une borne
inférieure.

Exercice 2 : Théorème de la limite monotone
Soit u ∈ RN une suite croissante et majorée.
Démontrer que u converge.
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2 Borne supérieure/inférieure

Théorème 2 : Propriété de la borne supérieure

• Toute partie non vide et majorée de R possède : une borne
supérieure.

• Toute partie non vide et minorée de R possède : une borne
inférieure.

Exemple 3
Soit I un intervalle non vide.
Pour toute fonction bornée f : I → R, on pose : ∥f ∥∞ = sup

x∈I
|f (x)|

Soit f , g : I → R, bornées et λ ∈ R∗. Etablir :
a) ∥f + g ∥∞ ≤ ∥f ∥∞ + ∥g ∥∞

b) ∥λf ∥∞ = |λ| × ∥f ∥∞
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2 Borne supérieure/inférieure

Théorème 3 : Caractérisation des intervalles
Soit I une partie non vide de R. Il y a équivalence entre :
i) I est un intervalle de R.

ii) Pour tous x , y ∈ I tels que x ≤ y :

24
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Théorème 3 : Caractérisation des intervalles
Soit I une partie non vide de R. Il y a équivalence entre :
i) I est un intervalle de R.
ii) Pour tous x , y ∈ I tels que x ≤ y : [x , y ] ⊂ I

I possède les valeurs intermédiaires
entre x et y

24



3 Borne supérieure et suites

Théorème 4
Soit M un majorant de A. Il y a équivalence entre :
i) M = sup A

ii) il existe une suite (an) d’éléments de A t.q. : an −→
n→+∞

M.
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ii) il existe une suite (an) d’éléments de A t.q. : an −→

n→+∞
M.

Exercice 4 : Borne sup « infinie »
Montrer que si A n’est pas majorée, alors il existe une suite
d’éléments de A de limite +∞
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Théorème 4
Soit M un majorant de A. Il y a équivalence entre :
i) M = sup A
ii) il existe une suite (an) d’éléments de A t.q. : an −→

n→+∞
M.

SF 13 : Utiliser les suites pour montrer que M = sup A
• On montre que M majore A.
• On construit une suite (an) ∈ AN t.q. : an −→

n→+∞
M.

Exemple 4 : Déterminer les bornes supérieures et inférieures

a) I = [2 , 3[ b) A =
{ q

2p + q ; p, q ∈ N∗
}
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3 Borne supérieure et suites

Théorème 4
Soit M un majorant de A. Il y a équivalence entre :
i) M = sup A
ii) il existe une suite (an) d’éléments de A t.q. : an −→

n→+∞
M.

Exemple 5
Soit u ∈ RN, bornée. Pour n ∈ N on pose : an = inf {uk ; k ≥ n}.
Montrer que (an) est croissante.
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4 Droite achevée R

Notation

• On pose : R = R ∪ {−∞, +∞}

• Notions de borne supérieure/inférieure aussi définies dans R

Exemple 6
a) supR+ =

+∞

b) sup∅ =

−∞

Propriété de la borne supérieure dans R

Toute partie de R possède une borne supérieure dans R

Par convention
∀x ∈ R, −∞ ≤ x ≤ +∞

Eventuellement ±∞

26
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V Approximations d’un nombre réel

I Limite d’une suite

II Suites extraites

III Complément : extension aux suites complexes

IV Borne supérieure, borne inférieure d’une partie de R

V Approximations d’un nombre réel
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Objectif

• Approcher un réel x par :

1. des décimaux
2. des rationnels

Rappel
La partie entière de x est le plus grand entier inférieur ou égal à x

Inégalités à retenir
•

⌊x⌋ ≤ x < ⌊x⌋ + 1

•

x − 1 < ⌊x⌋ ≤ x
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1 Approximation décimale

Inégalités à retenir
•

⌊x⌋

≤ x <

⌊x⌋ + 1

•

x − 1

< ⌊x⌋ ≤

x

Rappel

Un nombre décimal est un réel de la forme :

p
10n pour certains

p ∈ Z et n ∈ N.

Notation
L’ensemble des nombres décimaux est noté :

D

Exemple 1
On prend x = π.

a) Calculer : y1 = ⌊10x⌋
10 et z1 = ⌊10x⌋ + 1

10
b) Définir y2 et z2 pour que y2 = 3.14 et z2 = 3.15

29
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Définition 1

• L’approximation décimale de x à 10−n près par défaut est le
décimal :

yn = ⌊10nx⌋
10n

• L’approximation décimale de x à 10−n près par excès est le
décimal :

zn = ⌊10nx⌋ + 1
10n

(
= yn + 1

10n

)
Théorème 1
Pour tout n ∈ N :1.

yn ≤ x < zn

2.

zn − yn = 1
10n

3.


0 ≤ zn − x ≤ 1

10n

0 ≤ x − yn ≤ 1
10n

30



Définition 1

• L’approximation décimale de x à 10−n près par défaut est le
décimal : yn = ⌊10nx⌋

10n

• L’approximation décimale de x à 10−n près par excès est le
décimal :

zn = ⌊10nx⌋ + 1
10n

(
= yn + 1

10n

)
Théorème 1
Pour tout n ∈ N :1.

yn ≤ x < zn

2.

zn − yn = 1
10n

3.


0 ≤ zn − x ≤ 1

10n

0 ≤ x − yn ≤ 1
10n

30



Définition 1

• L’approximation décimale de x à 10−n près par défaut est le
décimal : yn = ⌊10nx⌋

10n

• L’approximation décimale de x à 10−n près par excès est le
décimal : zn = ⌊10nx⌋ + 1

10n

(
= yn + 1

10n

)

Théorème 1
Pour tout n ∈ N :1.

yn ≤ x < zn

2.

zn − yn = 1
10n

3.


0 ≤ zn − x ≤ 1

10n

0 ≤ x − yn ≤ 1
10n

30



Définition 1

• L’approximation décimale de x à 10−n près par défaut est le
décimal : yn = ⌊10nx⌋

10n

• L’approximation décimale de x à 10−n près par excès est le
décimal : zn = ⌊10nx⌋ + 1

10n

(
= yn + 1

10n

)
Théorème 1
Pour tout n ∈ N :1.

yn ≤ x < zn

2.

zn − yn = 1
10n

3.


0 ≤ zn − x ≤ 1

10n

0 ≤ x − yn ≤ 1
10n

30



Définition 1

• L’approximation décimale de x à 10−n près par défaut est le
décimal : yn = ⌊10nx⌋

10n

• L’approximation décimale de x à 10−n près par excès est le
décimal : zn = ⌊10nx⌋ + 1

10n

(
= yn + 1

10n

)
Théorème 1
Pour tout n ∈ N :1. yn ≤ x < zn 2.

zn − yn = 1
10n

3.


0 ≤ zn − x ≤ 1

10n

0 ≤ x − yn ≤ 1
10n

30



Définition 1

• L’approximation décimale de x à 10−n près par défaut est le
décimal : yn = ⌊10nx⌋

10n

• L’approximation décimale de x à 10−n près par excès est le
décimal : zn = ⌊10nx⌋ + 1

10n

(
= yn + 1

10n

)
Théorème 1
Pour tout n ∈ N :1. yn ≤ x < zn 2. zn − yn = 1

10n 3.


0 ≤ zn − x ≤ 1

10n

0 ≤ x − yn ≤ 1
10n

30



Définition 1

• L’approximation décimale de x à 10−n près par défaut est le
décimal : yn = ⌊10nx⌋

10n

• L’approximation décimale de x à 10−n près par excès est le
décimal : zn = ⌊10nx⌋ + 1

10n

(
= yn + 1

10n

)
Théorème 1
Pour tout n ∈ N :1. yn ≤ x < zn 2. zn − yn = 1

10n 3.
0 ≤ zn − x ≤ 1

10n

0 ≤ x − yn ≤ 1
10n

30



Définition 1

• L’approximation décimale de x à 10−n près par défaut est le
décimal : yn = ⌊10nx⌋

10n

• L’approximation décimale de x à 10−n près par excès est le
décimal : zn = ⌊10nx⌋ + 1

10n

(
= yn + 1

10n

)
Théorème 1
Pour tout n ∈ N :1. yn ≤ x < zn 2. zn − yn = 1

10n 3.
0 ≤ zn − x ≤ 1

10n

0 ≤ x − yn ≤ 1
10n

Exercice 1
Démontrer le théorème précédent.

30



Définition 1

• L’approximation décimale de x à 10−n près par défaut est le
décimal : yn = ⌊10nx⌋

10n
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Conséquence
Les suites (yn) et (zn) convergent vers x . 30



Définition 1

• L’approximation décimale de x à 10−n près par défaut est le
décimal : yn = ⌊10nx⌋

10n

• L’approximation décimale de x à 10−n près par excès est le
décimal : zn = ⌊10nx⌋ + 1

10n

(
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10n

)
Théorème 1
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10n 3.
0 ≤ zn − x ≤ 1

10n

0 ≤ x − yn ≤ 1
10n

Exercice 2
Montrer que les suites (yn) et (zn) sont adjacentes.
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2 Approximation par des rationnels

Rappels

1. Les nombres rationnels sont les réels de la forme : p
q pour

certains p ∈ Z et q ∈ N∗.

2. On dispose des inclusions suivantes :

Z ⊂ D ⊂ Q ⊂ R.

3. Les nombres irrationnels sont les éléments de :

R \ Q.

Théorème 2

1. Tout nombre réel est :

limite d’une suite de rationnels

2. Tout intervalle ouvert non vide possède un rationnel i.e. :

pour tous a, b ∈ R tels que a < b : Q ∩ ]a , b[ ̸= ∅.

Q est dense dans R

Exercice 3
Démontrer le théorème précédent.
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2 Approximation par des rationnels

Théorème 3
Tout nombre réel est :

limite d’une suite d’irrationnels.

Exercice 4
Démontrer le théorème précédent.

R \ Q est lui aussi
dense dans R

32
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2 Approximation par des rationnels

Théorème 4
Soit A ∈ P(R). Il y a équivalence entre :
i) Tout réel est limite d’une suite d’éléments de A.
ii) Tout intervalle ouvert non vide possède un élément de A.

A est dense dans R

Exercice 5
Démontrer l’implication ii) =⇒ i) du théorème.
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