Arithmétique dans Z

Chapitre 11
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1 Diviseurs, multiples

Définition 1
Soient a, b € Z. On dit que b divise a ou que a est un multiple de b
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1 Diviseurs, multiples

Définition 1
Soient a, b € Z. On dit que b divise a ou que a est un multiple de b

si : il existe k € Z tel que a = kb.
On note : b | a.

Exemple 1

a) Donner I'ensemble des diviseurs de 8

b) Donner I'ensemble des diviseurs de 0



1 Diviseurs, multiples

Définition 1
Soient a, b € Z. On dit que b divise a ou que a est un multiple de b

si : il existe k € Z tel que a = kb.
On note : b | a.

Exemple 2
Soient a,b € Z et n € N*.  Montrer que a — b divise a” — b".



1 Diviseurs, multiples

Définition 1
Soient a, b € Z. On dit que b divise a ou que a est un multiple de b

si : il existe k € Z tel que a = kb.
On note : b | a.

Exemple 3 : Entiers associés

Montrer quesi: al|b et b|a, alors: a==+b



1 Diviseurs, multiples

Théoreme 1 : Combinaisons linéaires.

Soient a,b,d € Z. Si d | aet d | b, alors d divise toute combinaison
linéaire de a et b :



1 Diviseurs, multiples

Théoreme 1 : Combinaisons linéaires.

Soient a,b,d € Z. Si d | aet d | b, alors d divise toute combinaison
lindaire de aet b: d|au+ bv pour tous u,v € Z.

Exercice 1

Démontrer ce résultat.



2 Congruences
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On dit que a est congru a b modulo n si :
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2 Congruences

On note
a=b [n]

Définition 2
Soient n € N et a,b € Z. /
On dit que a est congru a b modulonsi: n|a—b

Rappel

La congruence modulo n est : une relation d'équivalence sur Z.

Exemple 4 : Modulo 5
a) 7=21[5 b) 13= [5] c) 4= [5] d) 20= [5]



2 Congruences

On note
a=b [n]

Définition 2
Soient n € N et a,b € Z. /
On dit que a est congru a b modulonsi: n|a—b

Rappel

La congruence modulo n est : une relation d'équivalence sur Z.

Exemple 4 : Modulo 5
a) 7=21[5] b) 13=3 [5] c) 4= [5] d) 20= [5]



2 Congruences

On note
a=b [n]

Définition 2
Soient n € N et a,b € Z. /
On dit que a est congru a b modulonsi: n|a—b

Rappel

La congruence modulo n est : une relation d'équivalence sur Z.

Exemple 4 : Modulo 5
a) 7=2[5] b) 13=3 [5] c)4=-11[5 d) 20= [9]



2 Congruences

On note
a=b [n]

Définition 2
Soient n € N et a,b € Z. /
On dit que a est congru a b modulonsi: n|a—b

Rappel

La congruence modulo n est : une relation d'équivalence sur Z.

Exemple 4 : Modulo 5
a) 7=2[5] b) 13=3 [5] c) 4=-11[5 d) 20=0 [9]



2 Congruences

Théoreme 2 : Compatibilité avec les opérations

Soient a,a’,b,b' € Zetne N*. Sia=b [n] et & = b’ [n] alors :
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2 Congruences

Théoreme 2 : Compatibilité avec les opérations

Soient a,a’,b,b' € Zetne N*. Sia=b [n] et & = b’ [n] alors :

sat+ad =b+ b [n] » 22’ = bb' [n] -

pour tout k € N

Exercice 2

Démontrer ce théoreme
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Théoreme 2 : Compatibilité avec les opérations

Soient a,a’,b,b' € Zetne N*. Sia=b [n] et & = b’ [n] alors :
sat+ad =b+ b [n] » 22’ = bb' [n] -lakzbk [n]
pour tout k € N

SF 1 : congruences et divisibilité

n divise a si et seulement si :



2 Congruences

Théoreme 2 : Compatibilité avec les opérations

Soient a,a’,b,b' € Zetne N*. Sia=b [n] et & = b’ [n] alors :
sat+ad =b+ b [n] » 22’ = bb' [n] -lakzbk [n]
pour tout k € N

SF 1 : congruences et divisibilité

n divise a si et seulement si: a=0 [n].



2 Congruences

Théoreme 2 : Compatibilité avec les opérations

Soient a,a’,b,b' € Zetne N*. Sia=b [n] et & = b’ [n] alors :
sat+ad =b+ b [n] » 22’ = bb' [n] -lakzbk [n]
pour tout k € N

SF 1 : congruences et divisibilité
n divise a si et seulement si: a=0 [n].
Exemple 5

Montrer que 4345 4 943% est divisible par 5.
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tels que :
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3 Division euclidienne

Soient a € Z et b € N*. |l existe un unique couple (g, r) d'entiers

tels que :
1. a=bgqg + r 2. 0<r<b (ouencore0<r<b-1)



3 Division euclidienne

Soient a € Z et b € N*. |l existe un unique couple (g, r) d’entiers
tels que :
1. a=bgqg + r 2. 0<r<b (ouencore0<r<b-1)

(e

Etablir I'existence de cet unique couple par analyse-synthése.

Exercice 3




3 Division euclidienne

Soient a € Z et b € N*. |l existe un unique couple (g, r) d’entiers
tels que :
1. a=bgqg + r 2. 0<r<b (ouencore0<r<b-1)

(e

Etablir I'existence de cet unique couple par analyse-synthése.

Exercice 3

Exemple 6
Effectuer la division euclidienne de : a) 16 par 3 b) 65362 par 3



ion euclidienne

SF 2 : congruences et reste

Modulo b, I'entier a est congru a un seul élément de [0,b —1] :
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SF 2 : congruences et reste

Modulo b, I'entier a est congru a un seul élément de [0,b —1] :
le reste de la division euclidienne de a par b.



ion euclidienne

SF 2 : congruences et reste

Modulo b, I'entier a est congru a un seul élément de [0,b —1] :
le reste de la division euclidienne de a par b.

Exemple 7

Trouver le reste de la division euclidienne de 269362 par 7



3 Division euclidienne

SF 2 : congruences et reste

Modulo b, I'entier a est congru a un seul élément de [0,b —1] :
le reste de la division euclidienne de a par b.

Exemple 8

4345 1 934 ost-il divisible par 77



3 Division euclidienne

Exemple 9 : Tableau de congruence

Soit n € Z, impair. Montrer : n? =1 [8].



3 Division euclidienne

Exemple 9 : Tableau de congruence

Soit n € Z, impair. Montrer : n? =1 [8].

Exemple 10 : Tableau de congruence (bis)

Montrer que I'équation x> — 3y? = 17 n'a pas de solution dans Z?2.



Il PGCD et algorithme d’Euclide

I PGCD et algorithme d’Euclide



1 Définition du PGCD

Notation

Pour a € Z, on note Z(a) I'ensemble des diviseurs positifs de a.

Exemple : 2(4) = 2(0) =

10
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1 Définition du PGCD

Notation

Pour a € Z, on note Z(a) I'ensemble des diviseurs positifs de a.
Exemple : 2(4) = {1,2,4} 2(0) =N

Définition 1

Soient a, b € Z avec (a, b) # (0, 0).

On appelle PGCD de a et b le plus grand diviseur commun a a et b
On le note : a A b.
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1 Définition du PGCD

Notation

Pour a € Z, on note Z(a) I'ensemble des diviseurs positifs de a.
Exemple : 2(4) = {1,2,4} 2(0) =N

Définition 1

Soient a, b € Z avec (a, b) # (0, 0).

On appelle PGCD de a et b le plus grand diviseur commun a a et b
On le note : a A b.

Exemple 1
Calculer le PGCD de 16 et 12.

10



1 Définition du PGCD

Remarque

1. SiaeN*: an0= 2. Par convention: O0AQ0=
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Remarque

1. SiaeN*: an0=a 2. Par convention: O0AOQ0=0

Remarque
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1 Définition du PGCD

Remarque

1. SiaeN*: an0=a 2. Par convention: O0AOQ0=0

Remarque

On peut toujours supposer a et b positifs car : aAb=|a|A|b|

Soient a, b € Z. Pour tout k € 7Z :
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1 Définition du PGCD

Remarque

1. SiaeN*: an0=a 2. Par convention: O0AOQ0=0

Remarque

On peut toujours supposer a et b positifs car : aAb=|a|A|b|

Soient a, b € Z. Pour tout k € Z : aNb=bA(a— kb)

11



1 Définition du PGCD

Remarque

1. SiaeN*: an0=a 2. Par convention: O0AOQ0=0

Remarque

On peut toujours supposer a et b positifs car : aAb=|a|A|b|

Théoréme 1
Soient a,b € Z. Pour tout k € Z : aNb=bA(a—kb)

Exercice 1
Etablir I'égalité pour b # 0.
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1 Définition du PGCD

Remarque

1. SiaeN*: an0=a 2. Par convention: O0AOQ0=0

Remarque

On peut toujours supposer a et b positifs car : aAb=|a|A|b|

Théoréeme 1

Soient a, b € Z. Pour tout k € Z : aNb=bA(a— kb)

Exemple 2
Soit n € Z. Montrer : (7Tn—=5)A(Bn+2)=(n—9)A29.

11



2 Algorithme d’Euclide pour le calcul du PGCD

Algorithme d’Euclide pour calculer a A b

= Onpose: r.i1=a e rg=>b.

» Pour k € N, tant que ry # 0, on définit ri;1 comme le reste de

la division euclidienne de ry_1 par rg :

12
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2 Algorithme d’Euclide pour le calcul du PGCD

Algorithme d’Euclide pour calculer a A b

= Onpose: r.i1=a e rg=>b.
» Pour k € N, tant que ry # 0, on définit ri;1 comme le reste de

- rk—1 = qklk + rk+1
la division euclidienne de ry_1 par rg : { *

0 < rys1 < ry
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1. L 'algorithme se termine : il existe n € N tel que r, > 0 et rpy 1 =0
2. L’algorithme fournit le PGCD : aAb= r,

dernier reste non nul
fourni par I'algorithme

12



2 Algorithme d’Euclide pour le calcul du PGCD

Algorithme d’Euclide pour calculer a A b

= Onpose: r.i1=a e rg=>b.
» Pour k € N, tant que ry # 0, on définit ri;1 comme le reste de

- rk—1 = qklk + rk+1
la division euclidienne de ry_1 par rg : { *

0 < rys1 < ry

Théoréeme 2 : « pourquoi ca marche ? »

1. L 'algorithme se termine : il existe n € N tel que r, > 0 et rpy 1 =0
2. L’algorithme fournit le PGCD : aA b= r,

dernier reste non nul
fourni par I'algorithme

Démontrer les deux points du théoreme.
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2 Algorithme d’Euclide pour le calcul du PGCD

Algorithme d’Euclide pour calculer a A b

= Onpose: r.i1=a e rg=>b.
» Pour k € N, tant que ry # 0, on définit ri;1 comme le reste de

- rk—1 = qklk + rk+1
la division euclidienne de ry_1 par rg : { *

0 < rys1 < ry

Théoréeme 2 : « pourquoi ca marche ? »

1. L 'algorithme se termine : il existe n € N tel que r, > 0 et rpy 1 =0
2. L’algorithme fournit le PGCD : aAb= r,

dernier reste non nul
e 2 fourni par I'algorithme

Calculer 1659 A 504.

12



3 Propriétés du PGCD

Théoreme 3 : Relation de Bézout

Soient a, b € Z. |l existe (u, v) € Z? tel que :
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3 Propriétés du PGCD

Preuve par récurrence double sur k :
auy + bvy = ry pour certains uy, vi € 7Z

Théoreme 3 : Relation de Bézout

Soient a, b € Z. Il existe (u,v) € Z? tel que : au+bv=aAb

Exemple 4

Déterminer une relation de Bézout entre a = 1659 et b = 504.
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3 Propriétés du PGCD

Preuve par récurrence double sur k :
auy + bvy = ry pour certains uy, vi € 7Z

Théoreme 3 : Relation de Bézout

Soient a, b € Z. Il existe (u,v) € Z? tel que : au+bv=aAb

Exemple 4

Déterminer une relation de Bézout entre a = 1659 et b = 504.

Exemple 5 : %* Attention “*

Donner deux relation de Bézout entre les entiers a = 4 et b = 6.
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3 Propriétés du PGCD

Théoréme 4 : Lien avec les diviseurs communs

Soient a, b € Z.
Pour tout d € Z :
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3 Propriétés du PGCD
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Théoréme 4 : Lien avec les diviseurs commun

Soient a, b € Z.
Pourtoutde€Z: d|a et d|b ssi d| anb
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3 Propriétés du PGCD

a A b est le plus grand des diviseurs de a et b
au sens de la relation de divisibilité

Théoréme 4 : Lien avec les diviseurs commun

Soient a, b € Z.
Pourtoutde€Z: d|a et d|b ssi d| anb

Exercice 3

Démontrer I'équivalence ci-dessus.

14



3 Propriétés du PGCD

a A b est le plus grand des diviseurs de a et b
au sens de la relation de divisibilité

Théoreme 4 : Lien avec les diviseurs commun

Soient a, b € Z.
Pourtoutde€Z: d|a et d|b ssi d| anb

Théoreme 5 : Factorisation
Soient a, b € Z. Pour tout k € N* :
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[a A b est le plus grand des diviseurs de a et b]

au sens de la relation de divisibilité

Théoreme 4 : Lien avec les diviseurs commun

Soient a, b € Z.
Pourtoutde€Z: d|a et d|b ssi d| anb

Théoreme 5 : Factorisation
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14



3 Propriétés du PGCD

au sens de la relation de divisibilité

[a A b est le plus grand des diviseurs de a et b]

Théoréme 4 : Lien avec les diviseurs commun

Soient a, b € Z.
Pourtoutde€Z: d|a et d|b ssi d| anb

Théoreme 5 : Factorisation

Soient a, b € Z. Pour tout k € N* :  (ka) A (kb) = k(a A b)

Exercice 4

Démontrer la relation ci-dessus.

14
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aVb

Remarque

Par convention, pourtouta€Z: av0=0VvVa=0
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Définition 1
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aVb
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Soient a, b € Z*. On appelle PPCM de a et b le : plus petit

multiple strictement positif commun a a et .
aVb

Par convention, pourtouta€Z: av0=0VvVa=0

Théoreme 1 : PPCM et multiples communs

Pour tout m € Z : (alm et b|m) < aVb|m

Théoréme 2 : Factorisation

Pour tout kK € N :

Remarque
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Soient a, b € Z*. On appelle PPCM de a et b le : plus petit

multiple strictement positif commun a a et .
aVb

Par convention, pourtouta€Z: av0=0VvVa=0

Théoreme 1 : PPCM et multiples communs

Pour tout m € Z : (alm et b|m) < aVb|m

Théoréme 2 : Factorisation

Pour tout k e N: (ka) V (kb) = k(a V b)

Remarque
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PPCM

Soient a, b € Z*. On appelle PPCM de a et b le : plus petit

multiple strictement positif commun a a et .
aVb

Remarque

Par convention, pourtouta€Z: av0=0VvVa=0

Théoreme 1 : PPCM et multiples communs

Pour tout m € Z : (alm et b|m) < aVb|m

Théoréme 2 : Factorisation

Pour tout k e N: (ka) V (kb) = k(a V b)

Théoréeme 3 : Relation PGCD-PPCM
Soient a,b € N :
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PPCM

Définition 1
Soient a, b € Z*. On appelle PPCM de a et b le : plus petit

multiple strictement positif commun a a et bs On le note
aVb

Remarque

Par convention, pourtouta€Z: av0=0VvVa=0

Théoréme 1 : PPCM et multiples communs

Pour tout m € Z : (alm et b|m) < aVb|m

Théoréeme 2 : Factorisation
Pour tout k e N: (ka) V (kb) = k(a V b)

Théoreme 3 : Relation PGCD-PPCM
Soient a,be N: (aAb)x(aVb)=ab
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1 Définition

Définition 1
On dit que a et b sont premiers entre eux si :
Ou encore si :
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Ou encore si : leur seul diviseur positif commun est 1
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Sianb=d: (a=dd et b=db ou aAb=1]




1 Définition

Définition 1

On dit que a et b sont premiers entre eux si : a/A b= 1.
Ou encore si : leur seul diviseur positif commun est 1
Exemple 1

9 et 14 sont premiers entre eux mais 9 et 12 ne le sont pas.

SF 8 : Résoudre une équation faisant intervenir x A y ou x V y

Sianb=d: (a=dd et b=db ou aAb=1]

Exemple 2
x Ay =10

d’inconnue (x, y) € N?
xVy =120 b )

Résoudre le systeme {



1 Définition

Définition 1

On dit que a et b sont premiers entre eux si : a/A b= 1.
Ou encore si : leur seul diviseur positif commun est 1
Exemple 1

9 et 14 sont premiers entre eux mais 9 et 12 ne le sont pas.

SF 8 : Résoudre une équation faisant intervenir x A y ou x V y

Sianb=d: (a=dd et b=db ou aAb=1]

Exemple 3

Résoudre I'équation x A y = x? — y? — 2 d'inconnue (x, y) € N2,
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Théoréme 1 : Théoréme de Bézout
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i) a et b sont premiers entre eux
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Théoréme 1 : Théoréme de Bézout

Il'y a équivalence entre :
i) a et b sont premiers entre eux
i) Il existe (u,v) € Z2 tel que au + bv = 1.



2 Théoréme de Bézout et lemme de Gauss

Théoréme 1 : Théoréme de Bézout

Il'y a équivalence entre :
i) a et b sont premiers entre eux
i) Il existe (u,v) € Z2 tel que au + bv = 1.

Exercice 1

Démontrer cette équivalence
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Théoréme 2 : Lemme de Gauss

Si: a|bc et aAb=1 alors :  afc.

¢ Attention 4*

Sianb#1: albc x alb ou alc.
Par exemple : a=6, b=4 et c=0.



2 Théoréme de Bézout et lemme de Gauss

Théoreme 2 : Lemme de Gauss

Si: a|bc et aAb=1 alors :  afc.

¢ Attention 4*

Sianb#1: albc x alb ou alc.
Par exemple : a=6, b=4 et c=0.

Exercice 2

Démontrer le lemme de Gauss a I'aide du théoréme de Bézout.



2 Théoréme de Bézout et lemme de Gauss

Théoreme 2 : Lemme de Gauss

Si: a|bc et aAb=1 alors :  afc.

SF 7 : Résoudre dans Z? I'équation diophantienne ax + by = ¢

Exemple 4
Trouver tous les (x,y) € Z? tels que 7x + 12y = 3.
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Théoreme 3 : Entier premier avec un produit
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3 Conséquences classiques

Théoreme 3 : Entier premier avec un produit

Si: aAb=1 et aAnc=1 alors :  aA bc=1.

Extensions

» Si: aAbi=1...,aAb,=1 alors: aA(by...by)=1
= SiaAb=1alors pourtous mneN: a"Ab" =

Exercice 3 : Ex. 86.1, banque INP

Démontrer le théoreme a I'aide du théoreme de Bézout.
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Se généralise au produit de n entiers
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3 Conséquences classiques

Se généralise au produit de n entiers
premiers entre eux deux a deux

Théoreme 4 : Divisibilité par deux entiers premier\ entre eux

Si: alc, b|lc e aAb=1 alors: ab|c.

“* Attention 4

Sianb#1: alc e bf|c x ab|c.

Par exemple :

21



3 Conséquences classiques

Théoreme 4 : Divisibilité par deux entiers premiers entre eux

Si: alc, blc e anb=1 alors: ab|c.

4* Attention ¢

SiaAb#1: alc e blc x ab | c.
Par exemple : a==~6 b=10 c =230
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3 Conséquences classiques

Théoreme 4 : Divisibilité par deux entiers premiers entre eux

Si: alc, b|lc e aAb=1 alors: ab|c.

“* Attention 4

Sianb#1: alc e bf|c x ab|c.
Par exemple : a==~6 b =10 c =230

@ 2 Bd5 2><3><5|
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3 Conséquences classiques

Théoreme 4 : Divisibilité par deux entiers premiers entre eux

Si: alc, blc et anb=1 alors :  ab|c.

“* Attention 4

SiaAnb#1: alc et blc B ablc
Par exemple : a==~6 b =10 c =230

B

Démontrer ce résultat a I'aide du lemme de Gauss.

Exercice 4
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3 Conséquences classiques

Théoreme 4 : Divisibilité par deux entiers premiers entre eux

Si: alc, blc e anb=1 alors :  ab|c.

4* Attention ¢

SiaAnb#1: alc et blc L ablc
Par exemple : a==~6 b=10 c =230

Exercice 5 : Forme irréductible d’un rationnel

Soit r € Q. Montrer qu'il existe un unique couple
(p,q) € Z x N*pour lequel :  r = g et pAg=1

21
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Nombres premiers
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1 Généralités

Soit p € N. On dit que p est un nombre premier si :
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Soit p € N. On dit que p est un nombre premier si : p > 2 et si ses

seuls diviseurs positifs sont 1 et — —
diviseurs triviaux
de p
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1 Généralités

Ensemble

1ote P

Définition 1

Soit p € N. On dit que p est un nombre premier si : p > 2 et si ses

seuls diviseurs positifs sont 1 et — —
diviseurs triviaux
de p
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1 Généralités
Ensemble
noté P

Définition 1

Soit p € N. On dit que p est un nombre premier si : p > 2 et si ses

seuls diviseurs positifs sont 1 et p

diviseurs triviaux
de p

Remarque

n > 2 n'est pas premier s'il peut s'écrire :
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1 Généralités
Ensemble
noté P

Définition 1

Soit p € N. On dit que p est un nombre premier si : p > 2 et si ses

seuls diviseurs positifs sont 1 et p

diviseurs triviaux
de p

Remarque

n > 2 n'est pas premier s'il peut s'écrire: n=dgqou2<d<n-—1

\

n est diviseur
composé non trivial de n
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1 Généralités

Ensemble
noté P

Définition 1
Soit p € N. On dit que p est un nombre premier si : p > 2 et si ses

seuls diviseurs positifs sont 1 et p — —
diviseurs triviaux
de p

Remarque

n > 2 n'est pas premier s'il peut s'écrire: n=dgqou2<d<n-—1

\

Exemple 1 : Lemme d’Euclide composé non trivial de n

Soient a,b € Z et p € P.
On suppose que p | ab. Montrerque: p|a ou p|b.

n est [ diviseur ]
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1 Généralités

Ensemble
noté P

Définition 1
Soit p € N. On dit que p est un nombre premier si : p > 2 et si ses

seuls diviseurs positifs sont 1 et p — —
diviseurs triviaux
de p

Remarque

n > 2 n'est pas premier s'il peut s'écrire: n=dgqou2<d<n-—1

\

E o — o n est diviseur
xemple 2 : Nombres de Mersenng o056 non trivial de n

Soit n€ N, on pose: M, =2"—1.
Montrer que si M,, est premier, alors n est premier.

23



Crible d’Eratosthéne

@ 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 8 87 8 89 90
91 92 93 94 95 96 97 98 99 100

= 2 est premier
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Crible d’Eratosthéne

. 5 7 9

= 2 est premier 11 @ % 15 17 19
= on raye ses multiples |77 23 25 27 29
= 3 est premier 31 33 35 37 39
41 43 45 47 49

51 53 55 57 59

61 63 65 67 69

71 73 75 77 79

81 83 85 87 89

91 93 95 97 99
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Crible d’Eratosthéne

= 2 est premier 11 @ % é 177 (193
= on raye ses multiples @ 23 25 @ 29
= 3 est premier 31 @ 35 37
= on raye ses multiples |41 43 @ 47 49
53 55 67) 59

61 65 67

71 73 @ 77 79

83 85 89

91 95 97
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Crible d’Eratosthéne

- ONE) ® 7
= 2 est premier 1 13 - 19
= on raye ses multiples 23 o5 29
= 3 est premier 31 35 37
= on raye ses multiples |41 43 47 49
5 : 53 55 59
= est premier
61 65 67
71 73 77 79
83 85 89
91 95 97
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Crible d’Eratosthéne

. @ ® ® 7
= 2 est premier 11 13 17 19
= on raye ses multiples 23 29
= 3 est premier 31 37
= on raye ses multiples |41 43 50 i
= 5 est premier >3 @ >
_ 61 65 67
= on raye ses multiples |59 73 77 79
83 85 89
91 09 97

24



Crible d’Eratosthéne

. @ ©® ® @
= 2 est premier 11 13 17 19
= on raye ses multiples 23 29
= 3 est premier 31 37
= on raye ses multiples |41 43 50 i
= 5 est premier >3 >
' 61 67
= on raye ses multiples 71 73 77 79
= 7 est premier 83 89
91 97

24



Crible d’Eratosthéne

. @ & ® @
= 2 est premier 1 13 17 19
= on raye ses multiples 23 29
= 3 est premier 31 37
= on raye ses multiples |41 43 47
5 . 53 59
= 5 est premier
61 67
= on raye ses multiples 71 73 @ 79
= 7 est premier 83 89
= on raye ses multiples 97

24



Crible d’Eratosthéne

. ONE) ® @
= 2 est premier 11 13 17 19
= on raye ses multiples 23 29
= 3 est premier 31 37
= on raye ses multiples |41 43 47
5 . 53 59
= 5 est premier
, 61 67
= on raye ses multiples 71 73 79
= 7 est premier 83 89
= on raye ses multiples 97
= les autres?

24



Crible d’Eratosthéne

@)

®

2 est premier

@O

= on raye ses multiples
= 3 est premier
= on raye ses multiples
= 5 est premier
= on raye ses multiples

= 7 est premier

S AB ©
AP G® GOY

Q@ @ &8 &Q
@D &

= on raye ses multiples

= tous sont premiers

Si m > 2 n'est pas premier, il possede un diviseur premier p < \/m

24



1 Généralités

Tout entier n > 2 posséde au moins :



1 Généralités

Tout entier n > 2 posséde au moins : un diviseur premier.



1 Généralités

Tout entier n > 2 posséde au moins : un diviseur premier.

Exercice 1

Démontrer ce théoréme par récurrence forte sur n.
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1 Généralités

Tout entier n > 2 posséde au moins : un diviseur premier.

L'ensemble IP des nombres premiers est : infini.




1 Généralités

Tout entier n > 2 posséde au moins : un diviseur premier.

7 hY

Théoréme 2

L'ensemble IP des nombres premiers est : infini.

Exercice 2

Démontrer ce théoréme par |'absurde.




2 Petit théoréme de Fermat

Exercice 3 : Ex. 86.2a), banque INP

Soit p € P. Montrer que pour tout k € [1,p — 1], p divise ('Z)



2 Petit théoréme de Fermat

Exercice 3 : Ex. 86.2a), banque INP

Soit p € P. Montrer que pour tout k € [1,p — 1], p divise ('Z)

Théoréme 3 : Petit théoréme de Fermat

Soit n € Z et soit p € P :
1. 2.
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2 Petit théoréme de Fermat

Exercice 3 : Ex. 86.2a), banque INP

Soit p € P. Montrer que pour tout k € [1,p — 1], p divise ('Z)

Théoréme 3 : Petit théoréme de Fermat

Soit n € Z et soit p € P :
1. nP =n [p] 2.
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2 Petit théoréme de Fermat

Exercice 3 : Ex. 86.2a), banque INP

Soit p € P. Montrer que pour tout k € [1,p — 1], p divise ('Z)

Théoréme 3 : Petit théoréme de Fermat

Soit n € Z et soit p € P :
1. nP =n [p] 2. Sipnedivisepasn: nP7l=1 [p]
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2 Petit théoréme de Fermat

Exercice 3 : Ex. 86.2a), banque INP

Soit p € P. Montrer que pour tout k € [1,p — 1], p divise ('Z)

Théoréme 3 : Petit théoréme de Fermat

Soit n € Z et soit p € P :
1. nP =n [p] 2. Sipnedivise pasn: nP~l=1 [p]

Exercice 4 : Ex. 86.2b) et 2c), banque INP

Démontrer ce théoreme pour n € N.
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3 Valuation p-adique

notée vp(a)

Définition 2
Soient a € Z* et p € P. La valuation p-adique de a est le plus
grand k € N tel que p* divise a.
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3 Valuation p-adique

notée vp(a)

Définition 2
Soient a € Z* et p € P. La valuation p-adique de a est le plus

grand k € N tel que pX divise a. Autrement dit, v,(a) = k ssi :
= pkla et prtl fa ouencore = a=pkqg ol p fq

Exemple 3 : pour 84
"»(84) = =v3(84)= w=v(84)= =Sip¢ {2,3,7} v,(84) =
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3 Valuation p-adique

notée vp(a)

Définition 2
Soient a € Z* et p € P. La valuation p-adique de a est le plus

grand k € N tel que pX divise a. Autrement dit, v,(a) = k ssi :
= pkla et prtl fa ouencore = a=pkqg ol p fq

Exemple 3 : pour 84
"»(84) =2 n3(84) = =v7(84)= =Sip¢ {2,3,7} v,(84) =
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3 Valuation p-adique

notée vp(a)

Définition 2
Soient a € Z* et p € P. La valuation p-adique de a est le plus

grand k € N tel que pX divise a. Autrement dit, v,(a) = k ssi :
= pkla et prtl fa ouencore = a=pkqg ol p fq

Exemple 3 : pour 84
"»(84) =2 n3(84) =1 mv7(84) = =Sip¢ {2,3,7} v,(84) =
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3 Valuation p-adique

notée vp(a)

Définition 2
Soient a € Z* et p € P. La valuation p-adique de a est le plus

grand k € N tel que pX divise a. Autrement dit, v,(a) = k ssi :
= pkla et prtl fa ouencore = a=pkqg ol p fq

=22x3l x7!
Exemple 3 : pour 84
"»(84) =2 nv3(84) =1 mv7(84) =1 =Sip ¢ {2,3,7} v,(84) =
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3 Valuation p-adique

notée vp(a)

Définition 2
Soient a € Z* et p € P. La valuation p-adique de a est le plus

grand k € N tel que pX divise a. Autrement dit, v,(a) = k ssi :
= pkla et prtl fa ouencore = a=pkqg ol p fq

=22 x 3 x 71) [vp(a) =0&p )(a)

Exemple 3 : pour 84 \

" 1x(84) =2 w5(84) =1 wv7(84) = 1 uSip ¢ {2,3,7} v,(84) = 0
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3 Valuation p-adique

notée vp(a)

Définition 2
Soient a € Z* et p € P. La valuation p-adique de a est le plus

grand k € N tel que pX divise a. Autrement dit, v,(a) = k ssi :
= pkla et prtl fa ouencore = a=pkqg ol p fq

=22 x 3 x 71) [vp(a) =0&p )(a]

Exemple 3 : pour 84 \

" 1x(84) =2 w5(84) =1 wv7(84) = 1 uSip ¢ {2,3,7} v,(84) = 0

Exercice 5 : Additivité des valuations p-adiques

Soit a, b € Z* et p € P. Montrer : [vp(ab) = ]
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3 Valuation p-adique

notée vp(a)

Définition 2
Soient a € Z* et p € P. La valuation p-adique de a est le plus

grand k € N tel que pX divise a. Autrement dit, v,(a) = k ssi :
= pkla et prtl fa ouencore = a=pkqg ol p fq

=22 x 3 x 71) [vp(a) =0&p )(a]

Exemple 3 : pour 84 \

" 1x(84) =2 w5(84) =1 wv7(84) = 1 uSip ¢ {2,3,7} v,(84) = 0

Exercice 5 : Additivité des valuations p-adiques

Soit a, b € Z* et p € P. Montrer : [vp(ab) = vp(a) + vp(b)]
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3 Valuation p-adique

notée vp(a)

Définition 2
Soient a € Z* et p € P. La valuation p-adique de a est le plus

grand k € N tel que pX divise a. Autrement dit, v,(a) = k ssi :
= pkla et prtl fa ouencore = a=pkqg ol p fq

Exercice 6 : Unicité de la décomposition en facteurs premiers

Soit a € N* et py,..., pn les diviseurs premiers de a.
On suppose que :  a=pyt...py"  pour certains ag,...,a, € N.
Montrer que pour tout i € [1,n] :  «a; = vp(a) .
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3 Valuation p-adique

notée vp(a)

Définition 2

Soient a € Z* et p € P. La valuation p-adique de a est le plus

grand k € N tel que pX divise a. Autrement dit, v,(a) = k ssi :
= pkla et prtl fa ouencore = a=pkqg ol p fq

Exercice 6 : Unicité de la décomposition en facteurs premiers

Soit a € N* et py,..., pn les diviseurs premiers de a.
On suppose que :  a=pyt...py"  pour certains ag,...,a, € N.
Montrer que pour tout i € [1,n] :  «a; = vp(a) .

A\

Exposant de p;
dans la D.F.P.
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4 La décomposition en facteurs premiers

Théoréme 4 : Décomposition en facteurs premiers

Tout entier a > 2 s'écrit de maniere unique sous la forme

a—=
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4 La décomposition en facteurs premiers

ou: a= H pvp(a)

peP
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12 = 120 = 84 =
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4 La décomposition en facteurs premiers

Exemple 4
12=22x3 120=23x3x5 84=22x3x7

Théoréme 5 : Applications a la divisibilité
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4 La décomposition en facteurs premiers

Exemple 4
12=2%2x3 120=23x3x5 84=22x3x7
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Bn DFP de
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4 La décomposition en facteurs premiers

Théoreme 5 : Applications a la divisibilité

Soit: a=pt...pg" et b:pfl...pf"

1. b | asi et seulement si les valuations pj;-adiques de b sont

inférieures a celles de a : Vie[l,n], Bi<a;
ou encore  ssi : VpeP, vy(b) < vy(a)
2. maANb= prlnin(al’ﬁl) X+« x pmin(enfn)
max(aq,51) max(an,Bn)

»aVb= p X -+ X pp

Exercice 7

Calculer le PGCD de a = 84 et b = 120 selon deux méthodes.
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4 La décomposition en facteurs premiers

Théoreme 5 : Applications a la divisibilité

Soit: a=pt...py" et b=p". . por

1. b| asi et seulement si les valuatlons pi-adiques de b sont
inférieures a celles de a : Vie[l,n], Bi<a;
ou encore  ssi : VpeP, vy(b) < vy(a)

2 waAb= m|n(a1,ﬁ1) IR pmln(a,,,ﬂ,,)
a n

.3V h— max(al,/)’l) % o 5 p'Tax(an,/3n)

Exemple 4

Soit a, b € N*. Montrer que a divise b si et seulement si a° divise b?
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