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1 Diviseurs, multiples

Définition 1
Soient a, b ∈ Z. On dit que b divise a ou que a est un multiple de b
si :

il existe k ∈ Z tel que a = kb.

On note :

b | a.
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1 Diviseurs, multiples

Définition 1
Soient a, b ∈ Z. On dit que b divise a ou que a est un multiple de b
si : il existe k ∈ Z tel que a = kb.
On note : b | a.

Exemple 1
a) Donner l’ensemble des diviseurs de 8
b) Donner l’ensemble des diviseurs de 0
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1 Diviseurs, multiples

Définition 1
Soient a, b ∈ Z. On dit que b divise a ou que a est un multiple de b
si : il existe k ∈ Z tel que a = kb.
On note : b | a.

Exemple 2
Soient a, b ∈ Z et n ∈ N∗. Montrer que a − b divise an − bn.

2



1 Diviseurs, multiples

Définition 1
Soient a, b ∈ Z. On dit que b divise a ou que a est un multiple de b
si : il existe k ∈ Z tel que a = kb.
On note : b | a.

Exemple 3 : Entiers associés
Montrer que si : a | b et b | a, alors : a = ±b
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1 Diviseurs, multiples

Théorème 1 : Combinaisons linéaires.
Soient a, b, d ∈ Z. Si d | a et d | b, alors d divise toute combinaison
linéaire de a et b :

d | au + bv pour tous u, v ∈ Z.

Exercice 1
Démontrer ce résultat.

3



1 Diviseurs, multiples

Théorème 1 : Combinaisons linéaires.
Soient a, b, d ∈ Z. Si d | a et d | b, alors d divise toute combinaison
linéaire de a et b : d | au + bv pour tous u, v ∈ Z.

Exercice 1
Démontrer ce résultat.

3



2 Congruences

Définition 2
Soient n ∈ N et a, b ∈ Z.
On dit que a est congru à b modulo n si :

n | a − b

Rappel
La congruence modulo n est :

une relation d’équivalence sur Z.

Exemple 4 : Modulo 5
a) 7 ≡

2

[5] b) 13 ≡

3

[5] c) 4 ≡

−1

[5] d) 20 ≡

0

[5]

On note
a ≡ b [n]
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2 Congruences

Théorème 2 : Compatibilité avec les opérations
Soient a, a′, b, b′ ∈ Z et n ∈ N∗. Si a ≡ b [n] et a′ ≡ b′ [n] alors :
•

a + a′ ≡ b + b′ [n]

•

aa′ ≡ bb′ [n]

•

ak ≡ bk [n]
pour tout k ∈ N
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2 Congruences

Théorème 2 : Compatibilité avec les opérations
Soient a, a′, b, b′ ∈ Z et n ∈ N∗. Si a ≡ b [n] et a′ ≡ b′ [n] alors :
• a + a′ ≡ b + b′ [n] • aa′ ≡ bb′ [n] • ak ≡ bk [n]

pour tout k ∈ N

Exercice 2
Démontrer ce théorème
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2 Congruences

Théorème 2 : Compatibilité avec les opérations
Soient a, a′, b, b′ ∈ Z et n ∈ N∗. Si a ≡ b [n] et a′ ≡ b′ [n] alors :
• a + a′ ≡ b + b′ [n] • aa′ ≡ bb′ [n] • ak ≡ bk [n]

pour tout k ∈ N

SF 1 : congruences et divisibilité
n divise a si et seulement si :

a ≡ 0 [n].

Exemple 5
Montrer que 4345 + 9434 est divisible par 5.
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3 Division euclidienne

Théorème 3
Soient a ∈ Z et b ∈ N∗. Il existe un unique couple (q, r) d’entiers
tels que :
1.

a = b q + r

2.

0 ≤ r < b (ou encore 0 ≤ r ≤ b − 1)

Exercice 3
Etablir l’existence de cet unique couple par analyse-synthèse.

Exemple 6
Effectuer la division euclidienne de : a) 16 par 3 b) 65362 par 3

restequotient
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3 Division euclidienne

SF 2 : congruences et reste
Modulo b, l’entier a est congru à un seul élément de J0 , b − 1K :

le reste de la division euclidienne de a par b.
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3 Division euclidienne

SF 2 : congruences et reste
Modulo b, l’entier a est congru à un seul élément de J0 , b − 1K :
le reste de la division euclidienne de a par b.

Exemple 7
Trouver le reste de la division euclidienne de 265362 par 7 .
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3 Division euclidienne

SF 2 : congruences et reste
Modulo b, l’entier a est congru à un seul élément de J0 , b − 1K :
le reste de la division euclidienne de a par b.

Exemple 8
4345 + 9434 est-il divisible par 7 ?
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3 Division euclidienne

Exemple 9 : Tableau de congruence
Soit n ∈ Z, impair. Montrer : n2 ≡ 1 [8].

Exemple 10 : Tableau de congruence (bis)

Montrer que l’équation x2 − 3y2 = 17 n’a pas de solution dans Z2.
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1 Définition du PGCD

Notation
Pour a ∈ Z, on note D(a) l’ensemble des diviseurs positifs de a.
Exemple : D(4) =

{1, 2, 4}

D(0) =

N

Définition 1
Soient a, b ∈ Z avec (a, b) ̸= (0, 0).
On appelle PGCD de a et b le

plus grand diviseur commun à a et b
On le note : a ∧ b.

Exemple 1
Calculer le PGCD de 16 et 12.
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On appelle PGCD de a et b le plus grand diviseur commun à a et b
On le note : a ∧ b.

Exemple 1
Calculer le PGCD de 16 et 12.
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1 Définition du PGCD

Remarque
1. Si a ∈ N∗ : a ∧ 0 =

a

2. Par convention : 0 ∧ 0 =

0

Remarque
On peut toujours supposer a et b positifs car : a ∧ b =

|a| ∧ |b|

Théorème 1
Soient a, b ∈ Z. Pour tout k ∈ Z :

a ∧ b = b ∧ (a − kb)
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Remarque
1. Si a ∈ N∗ : a ∧ 0 = a 2. Par convention : 0 ∧ 0 = 0

Remarque
On peut toujours supposer a et b positifs car : a ∧ b = |a| ∧ |b|

Théorème 1
Soient a, b ∈ Z. Pour tout k ∈ Z : a ∧ b = b ∧ (a − kb)

Exercice 1
Etablir l’égalité pour b ̸= 0.
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1 Définition du PGCD

Remarque
1. Si a ∈ N∗ : a ∧ 0 = a 2. Par convention : 0 ∧ 0 = 0

Remarque
On peut toujours supposer a et b positifs car : a ∧ b = |a| ∧ |b|

Théorème 1
Soient a, b ∈ Z. Pour tout k ∈ Z : a ∧ b = b ∧ (a − kb)

Exemple 2
Soit n ∈ Z. Montrer : (7n − 5) ∧ (3n + 2) = (n − 9) ∧ 29.
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2 Algorithme d’Euclide pour le calcul du PGCD

Algorithme d’Euclide pour calculer a ∧ b

• On pose : r−1 = a et r0 = b.
• Pour k ∈ N, tant que rk ̸= 0, on définit rk+1 comme le reste de

la division euclidienne de rk−1 par rk :

{
rk−1 = qk rk + rk+1

0 ≤ rk+1 < rk

Théorème 2 : « pourquoi ça marche ? »

1. L’algorithme se termine :

il existe n ∈ N tel que rn > 0 et rn+1 = 0

2. L’algorithme fournit le PGCD :

a ∧ b = rn

dernier reste non nul
fourni par l’algorithme
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Démontrer les deux points du théorème.

dernier reste non nul
fourni par l’algorithme
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Théorème 2 : « pourquoi ça marche ? »

1. L’algorithme se termine : il existe n ∈ N tel que rn > 0 et rn+1 = 0
2. L’algorithme fournit le PGCD : a ∧ b = rn

Exemple 3
Calculer 1659 ∧ 504.

dernier reste non nul
fourni par l’algorithme
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3 Propriétés du PGCD

Théorème 3 : Relation de Bézout
Soient a, b ∈ Z. Il existe (u, v) ∈ Z2 tel que :

au + bv = a ∧ b

Exemple 4
Déterminer une relation de Bézout entre a = 1659 et b = 504.

Exemple 5 : j Attention j

Donner deux relation de Bézout entre les entiers a = 4 et b = 6.

Preuve par récurrence double sur k :
auk + bvk = rk pour certains uk , vk ∈ Z

13
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3 Propriétés du PGCD

Théorème 4 : Lien avec les diviseurs communs
Soient a, b ∈ Z.
Pour tout d ∈ Z :

d | a et d | b ssi d | a ∧ b

a ∧ b est le plus grand des diviseurs de a et b
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Exercice 3
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au sens de la relation de divisibilité
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PPCM

Définition 1
Soient a, b ∈ Z∗. On appelle PPCM de a et b le :

plus petit
multiple strictement positif commun à a et b.

Remarque
Par convention, pour tout a ∈ Z : a ∨ 0 = 0 ∨ a =

0

Théorème 1 : PPCM et multiples communs
Pour tout m ∈ Z :

(a | m et b | m) ⇐⇒ a ∨ b | m

Théorème 2 : Factorisation
Pour tout k ∈ N :

(ka) ∨ (kb) = k(a ∨ b)

Théorème 3 : Relation PGCD-PPCM
Soient a, b ∈ N :

(a ∧ b) × (a ∨ b) = ab

On le note
a ∨ b
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III Entiers premiers entre eux

I Divisibilité et division euclidienne

II PGCD et algorithme d’Euclide

III Entiers premiers entre eux

IV Nombres premiers
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1 Définition

Définition 1
On dit que a et b sont premiers entre eux si :

a ∧ b = 1.

Ou encore si :

leur seul diviseur positif commun est 1.

Exemple 1
9 et 14 sont premiers entre eux mais 9 et 12 ne le sont pas.

SF 8 : Résoudre une équation faisant intervenir x ∧ y ou x ∨ y
Si a ∧ b = d : a = da′ et b = db′ où a′ ∧ b′ = 1

j a ∧ b = 1 ne signifie pas :
« b ne divise pas a » j

17
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SF 8 : Résoudre une équation faisant intervenir x ∧ y ou x ∨ y
Si a ∧ b = d : a = da′ et b = db′ où a′ ∧ b′ = 1

Exemple 2

Résoudre le système
{

x ∧ y = 10
x ∨ y = 120

d’inconnue (x , y) ∈ N2

j a ∧ b = 1 ne signifie pas :
« b ne divise pas a » j
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Définition 1
On dit que a et b sont premiers entre eux si : a ∧ b = 1.
Ou encore si : leur seul diviseur positif commun est 1.

Exemple 1
9 et 14 sont premiers entre eux mais 9 et 12 ne le sont pas.

SF 8 : Résoudre une équation faisant intervenir x ∧ y ou x ∨ y
Si a ∧ b = d : a = da′ et b = db′ où a′ ∧ b′ = 1

Exemple 3
Résoudre l’équation x ∧ y = x2 − y2 − 2 d’inconnue (x , y) ∈ N2.

j a ∧ b = 1 ne signifie pas :
« b ne divise pas a » j
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2 Théorème de Bézout et lemme de Gauss

Théorème 1 : Théorème de Bézout
Il y a équivalence entre :
i) a et b sont premiers entre eux

ii) Il existe (u, v) ∈ Z2 tel que au + bv = 1.

Exercice 1
Démontrer cette équivalence

18



2 Théorème de Bézout et lemme de Gauss

Théorème 1 : Théorème de Bézout
Il y a équivalence entre :
i) a et b sont premiers entre eux
ii) Il existe (u, v) ∈ Z2 tel que au + bv = 1.

Exercice 1
Démontrer cette équivalence

18



2 Théorème de Bézout et lemme de Gauss

Théorème 1 : Théorème de Bézout
Il y a équivalence entre :
i) a et b sont premiers entre eux
ii) Il existe (u, v) ∈ Z2 tel que au + bv = 1.

Exercice 1
Démontrer cette équivalence

18



2 Théorème de Bézout et lemme de Gauss

Théorème 2 : Lemme de Gauss

Si : a | bc et a ∧ b = 1 alors : a | c.

j Attention j

Si a ∧ b ̸= 1 : a | bc =⇒ a | b ou a | c.
Par exemple :

a = 6, b = 4 et c = 9.

Exercice 2
Démontrer le lemme de Gauss à l’aide du théorème de Bézout.

19
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2 Théorème de Bézout et lemme de Gauss

Théorème 2 : Lemme de Gauss
Si : a | bc et a ∧ b = 1 alors : a | c.

SF 7 : Résoudre dans Z2 l’équation diophantienne ax + by = c

Exemple 4
Trouver tous les (x , y) ∈ Z2 tels que 7x + 12y = 3.

19



3 Conséquences classiques

Théorème 3 : Entier premier avec un produit

Si : a ∧ b = 1 et a ∧ c = 1 alors : a ∧ bc = 1.

Extensions

• Si : a ∧ b1 = 1, . . ., a ∧ bn = 1 alors : a ∧ (b1 . . . bn) = 1
• Si a ∧ b = 1 alors pour tous m, n ∈ N : an ∧ bm = 1

Exercice 3 : Ex. 86.1, banque INP
Démontrer le théorème à l’aide du théorème de Bézout.
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3 Conséquences classiques

Théorème 4 : Divisibilité par deux entiers premiers entre eux

Si : a | c, b | c et a ∧ b = 1 alors : ab | c.

j Attention j

Si a ∧ b ̸= 1 : a | c et b | c =⇒ ab | c.
Par exemple :

a = 6 b = 10 c = 30

21
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j Attention j

Si a ∧ b ̸= 1 : a | c et b | c =⇒ ab | c.
Par exemple :

a = 6 b = 10 c = 30

Se généralise au produit de n entiers
premiers entre eux deux à deux
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j Attention j

Si a ∧ b ̸= 1 : a | c et b | c =⇒ ab | c.
Par exemple : a = 6 b = 10 c = 30

Exercice 4 : Ex. 94.2, banque INP
Démontrer ce résultat à l’aide du lemme de Gauss.
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3 Conséquences classiques

Théorème 4 : Divisibilité par deux entiers premiers entre eux
Si : a | c, b | c et a ∧ b = 1 alors : ab | c.

j Attention j

Si a ∧ b ̸= 1 : a | c et b | c =⇒ ab | c.
Par exemple : a = 6 b = 10 c = 30

Exercice 5 : Forme irréductible d’un rationnel
Soit r ∈ Q. Montrer qu’il existe un unique couple
(p, q) ∈ Z × N∗pour lequel : r = p

q et p ∧ q = 1
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1 Généralités

Définition 1
Soit p ∈ N. On dit que p est un nombre premier si :

p ≥ 2 et si ses
seuls diviseurs positifs sont 1 et p.

Remarque
n ≥ 2 n’est pas premier s’il peut s’écrire :

n = dq où 2 ≤ d ≤ n − 1

diviseurs triviaux
de p

Ensemble
noté P 1 /∈ P

diviseur
non trivial de n

n est
composé

Go to prop
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seuls diviseurs positifs sont 1 et p.

Remarque
n ≥ 2 n’est pas premier s’il peut s’écrire : n = dq où 2 ≤ d ≤ n − 1

Exemple 1 : Lemme d’Euclide
Soient a, b ∈ Z et p ∈ P.
On suppose que p | ab. Montrer que : p | a ou p | b.

diviseurs triviaux
de p

Ensemble
noté P 1 /∈ P

diviseur
non trivial de n

n est
composé

Go to prop
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1 Généralités

Définition 1
Soit p ∈ N. On dit que p est un nombre premier si : p ≥ 2 et si ses
seuls diviseurs positifs sont 1 et p.

Remarque
n ≥ 2 n’est pas premier s’il peut s’écrire : n = dq où 2 ≤ d ≤ n − 1

Exemple 2 : Nombres de Mersenne
Soit n ∈ N, on pose : Mn = 2n − 1.
Montrer que si Mn est premier, alors n est premier.

diviseurs triviaux
de p

Ensemble
noté P 1 /∈ P

diviseur
non trivial de n

n est
composé

Go to prop
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Crible d’Eratosthène

• 2 est premier

• on raye ses multiples
• 3 est premier
• on raye ses multiples
• 5 est premier
• on raye ses multiples
• 7 est premier
• on raye ses multiples
•

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
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Crible d’Eratosthène

• 2 est premier
• on raye ses multiples
• 3 est premier
• on raye ses multiples
• 5 est premier
• on raye ses multiples
• 7 est premier
• on raye ses multiples
• les autres ?

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
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Crible d’Eratosthène

• 2 est premier
• on raye ses multiples
• 3 est premier
• on raye ses multiples
• 5 est premier
• on raye ses multiples
• 7 est premier
• on raye ses multiples
• tous sont premiers

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Si m ≥ 2 n’est pas premier, il possède un diviseur premier p ≤
√

m
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1 Généralités

Théorème 1
Tout entier n ≥ 2 possède au moins :

un diviseur premier.

Exercice 1
Démontrer ce théorème par récurrence forte sur n.

Théorème 2
L’ensemble P des nombres premiers est :

infini.

Exercice 2
Démontrer ce théorème par l’absurde.
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2 Petit théorème de Fermat

Exercice 3 : Ex. 86.2a), banque INP

Soit p ∈ P. Montrer que pour tout k ∈ J1 , p − 1K, p divise
(

p
k

)
.

Théorème 3 : Petit théorème de Fermat
Soit n ∈ Z et soit p ∈ P :
1.

np ≡ n [p]

2.

Si p ne divise pas n : np−1 ≡ 1 [p]

Exercice 4 : Ex. 86.2b) et 2c), banque INP

Démontrer ce théorème pour n ∈ N.
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3 Valuation p-adique

Définition 2
Soient a ∈ Z∗ et p ∈ P. La valuation p-adique de a est le plus
grand k ∈ N tel que pk divise a.

Autrement dit, vp(a) = k ssi :
•

pk | a et

pk+1 ̸ | a

ou encore •

a = pkq où

p ̸ | q

notée vp(a)

Exposant de pi
dans la D.F.P.
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Soient a ∈ Z∗ et p ∈ P. La valuation p-adique de a est le plus
grand k ∈ N tel que pk divise a. Autrement dit, vp(a) = k ssi :
• pk | a et pk+1 ̸ | a ou encore • a = pkq où p ̸ | q

Exemple 3 : pour 84

•v2(84) =

2

•v3(84) =

1

•v7(84) =

1

•Si p /∈ {2, 3, 7} vp(84) =

0

Exercice 5 : Additivité des valuations p-adiques
Soit a, b ∈ Z∗ et p ∈ P. Montrer : vp(ab) =

vp(a) + vp(b)

notée vp(a)
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Exemple 3 : pour 84

•v2(84) = 2 •v3(84) = 1 •v7(84) = 1 •Si p /∈ {2, 3, 7} vp(84) = 0

Exercice 5 : Additivité des valuations p-adiques
Soit a, b ∈ Z∗ et p ∈ P. Montrer : vp(ab) =

vp(a) + vp(b)

notée vp(a)

= 22 × 31 × 71 vp(a) = 0 ⇔ p ̸ |a

Exposant de pi
dans la D.F.P.
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4 La décomposition en facteurs premiers

Théorème 4 : Décomposition en facteurs premiers
Tout entier a ≥ 2 s’écrit de manière unique sous la forme

a =

pα1
1 pα2

2 . . . pαn
n

où : •

p1, . . . pn ∈ P

•

p1 < · · · < pn

•

α1, . . . , αn ∈ N∗

Exemple 4
12 =

22 × 3

120 =

23 × 3 × 5

84 =

22 × 3 × 7

ou : a =
∏
p∈P

pvp(a)
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4 La décomposition en facteurs premiers

Exemple 4
12 = 22 × 3 120 = 23 × 3 × 5 84 = 22 × 3 × 7

Théorème 5 : Applications à la divisibilité

Soit : a = pα1
1 . . . pαn

n et b = pβ1
1 . . . pβn

n

1. b | a si et seulement si les valuations pi -adiques de b sont
inférieures à celles de a :

∀i ∈ J1 , nK, βi ≤ αi

ou encore ssi :

∀p ∈ P, vp(b) ≤ vp(a)

2. • a ∧ b =

pmin(α1,β1)
1 × · · · × pmin(αn,βn)

n

• a ∨ b =

pmax(α1,β1)
1 × · · · × pmax(αn,βn)

n
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Exercice 7
Calculer le PGCD de a = 84 et b = 120 selon deux méthodes.

29



4 La décomposition en facteurs premiers

Théorème 5 : Applications à la divisibilité

Soit : a = pα1
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1 × · · · × pmin(αn,βn)

n

• a ∨ b = pmax(α1,β1)
1 × · · · × pmax(αn,βn)

n

Exemple 4
Soit a, b ∈ N∗. Montrer que a divise b si et seulement si a2 divise b2
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