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Ensemble de définition

Cadre

• D est une partie de R.
• f : D → R est une fonction.

Exemple 1
Déterminer l’ensemble de définition de f : x 7→

√
ln |x |.

Ensemble de
définition de f
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1 Transformation affine du graphe

Figure

Voir la fiche récapitulative
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2 Parité, imparité périodicité

Définition 1
On suppose D symétrique par rapport à 0 :

∀x ∈ D, −x ∈ D
• f est paire si :

∀x ∈ D, f (−x) = f (x)

• f est impaire si :

∀x ∈ D, f (−x) = −f (x)
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2 Parité, imparité périodicité

Définition 1
On suppose D symétrique par rapport à 0 : ∀x ∈ D, −x ∈ D
• f est paire si :

∀x ∈ D, f (−x) = f (x)

• f est impaire si :

∀x ∈ D, f (−x) = −f (x)

Exemple 2
Que dire de la dérivée d’une fonction dérivable paire ? impaire ?
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2 Parité, imparité périodicité

Définition 1
On suppose D symétrique par rapport à 0 : ∀x ∈ D, −x ∈ D
• f est paire si :

∀x ∈ D, f (−x) = f (x)

• f est impaire si :

∀x ∈ D, f (−x) = −f (x)

Exemple 3
Soit f une fonction de R dans R. Montrer que f s’écrit de façon
unique comme la somme d’une fonction paire et d’une fonction
impaire.
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2 Parité, imparité périodicité

Définition 2
Soit T > 0. La fonction f est T-périodique si :

∀x ∈ D, x + T ∈ D et f (x + T ) = f (x)
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2 Parité, imparité périodicité

Définition 2
Soit T > 0. La fonction f est T-périodique si :

∀x ∈ D, x + T ∈ D et f (x + T ) = f (x)

Exercice 1
On suppose f T -périodique sur R.
Soit ω > 0. Déterminer une période de la fonction g : t 7→ f (ωt)
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2 Parité, imparité périodicité

Définition 2
Soit T > 0. La fonction f est T-périodique si :

∀x ∈ D, x + T ∈ D et f (x + T ) = f (x)

Exercice 2
On suppose f T -périodique.
Soit x ∈ D. Trouver y ∈ [0 , T [ tel que : f (y) = f (x).
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3 Rappels sur la dérivation

Cadre

• I est un intervalle
• f : I → R est une fonction définie sur I
• a est un point de I.

Définition 3

f est dérivable en a si son taux d’accroissement en a,

f (x) − f (a)
x − a

possède une limite finie quand x tend vers a.
En ce cas on pose : f ′(a) = lim

x→a
f (x) − f (a)

x − a

Formulaire à connaître
Voir, et connaître, les tableaux correspondants.
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3 Rappels sur la dérivation

Définition 4

f est dérivable en a si son taux d’accroissement en a, f (x) − f (a)
x − a

possède une limite finie quand x tend vers a.

En ce cas on pose :

f ′(a) = lim
x→a

f (x) − f (a)
x − a

Théorème 1 : Composition (rappel)

On suppose que :
i) v est dérivable sur J

ii) u est dérivable sur I et valeurs dans J i.e. :

∀x ∈ I, u(x) ∈ J

alors v ◦ u est dérivable sur I et : (v ◦ u)′ = u′ × (v ′ ◦ u)

SF 5 : justifier la dérivabilité d’une composée

a) Déterminer l’ensemble de définition de f : x 7→
√

x(1 − x)
b) Trouver un ensemble sur lequel f est dérivable
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3 Rappels sur la dérivation

Théorème 2
On suppose f dérivable sur I.
• f est croissante sur I ssi :

∀x ∈ I, f ′(x) ≥ 0.
• f est constante sur I ssi :

∀x ∈ I, f ′(x) = 0.

• Condition suffisante de stricte monotonie :

Si f ′ ≥ 0 sur I et si f ′ ne s’annule qu’un nombre fini de fois, alors
f est strictement croissante sur I
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3 Rappels sur la dérivation

Théorème 2
On suppose f dérivable sur I.
• f est croissante sur I ssi : ∀x ∈ I, f ′(x) ≥ 0.
• f est constante sur I ssi : ∀x ∈ I, f ′(x) = 0.
• Condition suffisante de stricte monotonie :

Si f ′ ≥ 0 sur I et si f ′ ne s’annule qu’un nombre fini de fois, alors
f est strictement croissante sur I

Exemple 4
Montrer que la fonction f : x 7→ 2x + cos(2x) est strictement
croissante sur [0 , 2π].
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3 Rappels sur la dérivation

Théorème 2
On suppose f dérivable sur I.
• f est croissante sur I ssi : ∀x ∈ I, f ′(x) ≥ 0.
• f est constante sur I ssi : ∀x ∈ I, f ′(x) = 0.
• Condition suffisante de stricte monotonie :

Si f ′ ≥ 0 sur I et si f ′ ne s’annule qu’un nombre fini de fois, alors
f est strictement croissante sur I

Exemple 5 : Un raisonnement par analyse-synthèse
Trouver toutes les fonctions f : R → R dérivables telles que :

∀x , y ∈ R, f (x) − f (y) = (x − y)f ′(x + y
2

)
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1 Définition et position par rapport aux cordes

Cadre

• I est un intervalle
• f : I → R est une fonction définie sur I

Définition 1
La fonction f est convexe si pour tous a, b ∈ I :

∀t ∈ [0 , 1], f
()

≤ (1 − t)f (a) + tf (b)
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(
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)
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Cadre

• I est un intervalle
• f : I → R est une fonction définie sur I

Définition 1
La fonction f est convexe si pour tous a, b ∈ I :

∀t ∈ [0 , 1], f
(

(1 − t)a + tb
)

≤ (1 − t)f (a) + tf (b)

Géométriquement
Cf est en dessous de toutes ses cordes.

décrit [a , b] lorsque
t décrit [0 , 1]
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1 Définition et position par rapport aux cordes

Définition 1
La fonction f est convexe si pour tous a, b ∈ I :

∀t ∈ [0 , 1], f
(

(1 − t)a + tb
)

≤ (1 − t)f (a) + tf (b)

Géométriquement
Cf est en dessous de toutes ses cordes.

Exemple 1
Etablir : ∀a, b ∈ R, ea+b ≤ e2a+e2b

2 .

décrit [a , b] lorsque
t décrit [0 , 1]
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1 Définition et position par rapport aux cordes

Définition 1
La fonction f est convexe si pour tous a, b ∈ I :

∀t ∈ [0 , 1], f
(
(1 − t)a + tb

)
≤ (1 − t)f (a) + tf (b)

Géométriquement
Cf est en dessous de toutes ses cordes.

Remarque
La fonction f est concave si :

∀a, b ∈ I, ∀t ∈ [0 , 1], f
(
(1 − t)a + tb

)
≥ (1 − t)f (a) + tf (b)
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2 Caractérisations de la convexité

Remarque
La fonction f est concave si

∀t ∈ [a , b], f
(
(1 − t)a + tb

)
≥ (1 − t)f (a) + tf (b)

Théorème 1
Il y a équivalence entre :
i) f est convexe sur I

ii) Pour tout a ∈ I, la fonction τa : x 7→ f (x) − f (a)
x − a est

croissante sur I \ {a}.
fonction taux

d’accroissement de f en a
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2 Caractérisations de la convexité

Théorème 1
Il y a équivalence entre :
i) f est convexe sur I

ii) Pour tout a ∈ I, la fonction τa : x 7→ f (x) − f (a)
x − a est

croissante sur I \ {a}.

Exercice 1
Démontrer cette équivalence.

fonction taux
d’accroissement de f en a
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2 Caractérisations de la convexité

Théorème 1
Il y a équivalence entre :
i) f est convexe sur I

ii) Pour tout a ∈ I, la fonction τa : x 7→ f (x) − f (a)
x − a est

croissante sur I \ {a}.

Exemple 2
Soit f : R → R, convexe et majorée. Montrer que f est constante.

fonction taux
d’accroissement de f en a
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3 Inégalités de convexité

Théorème 2

• On suppose f dérivable sur I.
f est convexe ssi :

f ′ est croissante sur I

• On suppose f deux fois dérivable sur I.
f est convexe ssi :

f ′′ ≥ 0 sur I

Inégalité des cordes
On suppose f convexe sur I. Soit a, b ∈ I, distincts.

Pour tout x entre a et b :

f (x) ≤ f (a) + f (b) − f (a)
b − a (x − a)
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3 Inégalités de convexité

Inégalité des cordes
On suppose f convexe sur I. Soit a, b ∈ I, distincts.

Pour tout x entre a et b : f (x) ≤ f (a) + f (b) − f (a)
b − a (x − a)

Théorème 3
On suppose f dérivable sur I. Si f est convexe sur I, alors le graphe
de f est situé au-dessus de toutes ses tangentes.
Pour tous a, x ∈ I :

f (x) ≥ f (a) + f ′(a)(x − a)
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de f est situé au-dessus de toutes ses tangentes.
Pour tous a, x ∈ I : f (x) ≥ f (a) + f ′(a)(x − a)

Théorème 4 : Inégalité de Jensen
On suppose f convexe sur I. Soit n ∈ N∗. Pour tous a1, . . . , an ∈ I

et t1, . . . , tn ∈ [0 , 1] tels que
n∑

i=1
ti = 1 :

f
( n∑

i=1
tiai

)
≤

n∑
i=1

ti f (ai)
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et t1, . . . , tn ∈ [0 , 1] tels que
n∑

i=1
ti = 1 : f

( n∑
i=1

tiai

)
≤

n∑
i=1

ti f (ai)
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n :

f
(

1
n

n∑
i=1

ai

)
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n

n∑
i=1

f (ai)

Exemple 3 : Inégalité arithmético-géométrique

Soient x1, . . . , xn ∈ R∗
+. Etablir : x1 + · · · + xn

n ≥ (x1 . . . xn) 1
n
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III Fonctions trigonométriques
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Rappels

Rappel
Soit α, x , y ∈ R. On dit que x est congru à y modulo α s’il existe
k ∈ Z tel que : x = y + kα.

Notation
On note alors : x ≡ y [α]

Exemple 1 : Modulo 2π

a) −π

2 ≡

3π

2

[2π]

b) 8π ≡

0

[2π]
c) 15π ≡

π

[2π]

d) 11π

3 ≡

−π

3 ≡ 5π

3

[2π]
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1 Rappels sur les fonctions cosinus et sinus

Exemple 1 : Modulo 2π

a) −π

2 ≡ 3π

2 [2π]

b) 8π ≡ 0 [2π]
c) 15π ≡ π [2π]

d) 11π

3 ≡ −π

3 ≡ 5π

3 [2π]

Exemple 2
Soit θ ∈ R. On pose : u0 = 1, u1 = cos θ et :

∀n ∈ N, un+2 = 2un+1 cos θ − un

Démontrer que pour tout n ∈ N : un = cos(nθ).

17



1 Rappels sur les fonctions cosinus et sinus

Théorème 1 : Propriétés

i) cos et sin sont 2π-périodiques
ii) cos est paire, sin est impaire.
iii) sin et cos sont dérivables et sin′ = cos et cos′ = − sin.

Théorème 2 : Utilisation du cercle trigonométrique

• Pour tout θ ∈ R :

cos2 θ + sin2 θ = 1.

• Réciproquement, pour tous x , y ∈ R tels que x2 + y2 = 1 :

il existe θ ∈ R tel que :
{

x = cos θ,

y = sin θ

18
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1 Rappels sur les fonctions cosinus et sinus

Théorème 2 : Utilisation du cercle trigonométrique

• Pour tout θ ∈ R : cos2 θ + sin2 θ = 1.
• Réciproquement, pour tous x , y ∈ R tels que x2 + y2 = 1 :

il existe θ ∈ R tel que :
{

x = cos θ,

y = sin θ

Théorème 3
Pour tous θ, φ ∈ R :

cos θ = cos φ ⇔


θ ≡ φ[2π]
ou

θ ≡ −φ[2π]

Théorème 4
Pour tous θ, φ ∈ R :

sin θ = sin φ ⇔


θ ≡ φ[2π]
ou

θ ≡ π − φ[2π]

Exemple 3
Résoudre l’équation cos x = sin x d’inconnue x ∈ R.
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1 Rappels sur les fonctions cosinus et sinus

Théorème 3
Pour tous θ, φ ∈ R :

cos θ = cos φ ⇔


θ ≡ φ[2π]
ou
θ ≡ −φ[2π]
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θ ≡ φ[2π]
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θ ≡ π − φ[2π]

Exemple 3
Résoudre l’équation cos x = sin x d’inconnue x ∈ R.
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1 Rappels sur les fonctions cosinus et sinus

Théorème 5 : Réduction de a cos t + b sin t
Soient a, b ∈ R tels que (a, b) ̸= (0, 0).
On peut trouver un réel φ tel que :

∀t ∈ R, a cos t + b sin t =
√

a2 + b2 cos(t − φ)
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On peut trouver un réel φ tel que :

∀t ∈ R, a cos t + b sin t =
√

a2 + b2 cos(t − φ)

Exercice 1
Démontrer le théorème en commençant par factoriser
a cos t + b sin t par

√
a2 + b2.
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On peut trouver un réel φ tel que :

∀t ∈ R, a cos t + b sin t =
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Exemple 4
Trouver A et φ tels que pour tout t ∈ R :

√
2 cos t +

√
6 sin t = A cos(t − φ)
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1 Rappels sur les fonctions cosinus et sinus

Théorème 5 : Réduction de a cos t + b sin t
Soient a, b ∈ R tels que (a, b) ̸= (0, 0).
On peut trouver un réel φ tel que :

∀t ∈ R, a cos t + b sin t =
√

a2 + b2 cos(t − φ)

Exemple 5
Résoudre l’équation cos t + sin t = 1 d’inconnue t ∈ R.

20



2 la fonction tangente

Définition 1
La fonction tangente est définie sur D = R \

{
π
2 + kπ ; k ∈ Z

}
par : tan = sin

cos

réels qui annulent cos

Théorème 6

i) tan est π-périodique.
ii) tan est impaire

iii) tan est dérivable sur D et : tan′ = 1
cos2 = 1 + tan2

Exercice 2
a) Prouver le point iii) b) Démontrer la formule sur tan(a + b)
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