Rappels et compléments sur les fonctions

Chapitre 1
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Ensemble de

définition de f

Cadre

= D est une partie de R.
= f:D — R est une fonction.

Exemple 1
Déterminer I'ensemble de définition de £ : x — /In|x].



1 Transformation affine du graphe

Voir la fiche récapitulative


https://www.desmos.com/calculator/hy3qzuaalw

2 Parité, imparité périodicité

On suppose D symétrique par rapport a 0 :
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2 Parité, imparité périodicité

On suppose D symétrique par rapport a0 : Vx e D, —xe& D

= f est pairesi:
Vx € D, f(—x)="f(x)
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2 Parité, imparité périodicité

On suppose D symétrique par rapport a0 : Vx e D, —xe& D

= f est pairesi:
Vx € D, f(—x)="f(x)

= f est impaire si :

Exemple 2

Que dire de la dérivée d'une fonction dérivable paire 7 impaire ?



2 Parité, imparité périodicité

Définition 1
On suppose D symétrique par rapport a0 : Vx e D, —xe& D

= f est pairesi:
Vx € D, f(—x)="f(x)

= f est impaire si :

Exemple 3

Soit f une fonction de R dans R. Montrer que f s'écrit de facon
unique comme la somme d’une fonction paire et d'une fonction
impaire.
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2 Parité, imparité périodicité

Soit T > 0. La fonction f est T-périodique si :

Vx € D, x+TeD et f(x+T)="~f(x)

Exercice 1

On suppose f T-périodique sur R.
Soit w > 0. Déterminer une période de la fonction g : t — f(wt)




2 Parité, imparité périodicité

Soit T > 0. La fonction f est T-périodique si :

Vx € D, x+TeD et f(x+T)="~f(x)

Exercice 2

On suppose f T-périodique.
Soit x € D. Trouver y € [0, T[ tel que :  f(y) = f(x).




3 Rappels sur la dérivation

Cadre

= [ est un intervalle
= f: | — R est une fonction définie sur /

= 3 est un point de /.

Définition 3

f est dérivable en a si son taux d'accroissement en a,
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3 Rappels sur la dérivation

Cadre

= [ est un intervalle
= f: | — R est une fonction définie sur /

= 3 est un point de /.

Définition 3
f(x) —f(a)

X —a

f est dérivable en a si son taux d'accroissement en a,
posséde une limite finie quand x tend vers a.

. f(x)—f(a
En ce cas on pose : f'(a) = lim () = f(a)

X—a X — a
Formulaire a connaitre

Voir, et connaitre, les tableaux correspondants.
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Théoréme 1 : Composition (rappel)

On suppose que :
i) v est dérivable sur J
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3 Rappels sur la dérivation

f(x) — f(a)

f est dérivable en a si son taux d'accroissement en a,

possede une limite finie quand x tend vers a.
f(x)—f~
f(a) = lim 1) =)

xX—a X — a

Théoréme 1 : Composition (rappel)

On suppose que :
i) v est dérivable sur J

ii) u est dérivable sur / et valeurs dans J ie.: Vx e[, u(x)eJ



3 Rappels sur la dérivation

Définition 4

f(x) — f(a)

f est dérivable en a si son taux d'accroissement en a,
X —a

possede une limite finie quand x tend vers a.

f(x)—f
En ce cas on pose : f'(a) = lim f(x) —f(a)
X—a X — a

Théoréme 1 : Composition (rappel)

On suppose que :

i) v est dérivable sur J
ii) u est dérivable sur / et valeurs dans J ie.: Vx e[, u(x)eJ

alors v o u est dérivable sur [ et : [(v ou) =u x (Vo u)]




3 Rappels sur la dérivation

Théoréeme 1 : Composition (rappel)

On suppose que :
i) v est dérivable sur J
ii) u est dérivable sur / et valeurs dans J i.e.: Vx e, u(x)e J

alors v o u est dérivable sur [ et : [(v ou) =uv x (Vo u)]

SF 5 : justifier la dérivabilité d’'une composée

a) Déterminer I'ensemble de définition de £ : x — /x(1 — x)

b) Trouver un ensemble sur lequel f est dérivable
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3 Rappels sur la dérivation

On suppose f dérivable sur /.

» f est croissante sur [ ssi: Vx el f'(x)>0.
» f est constante sur /'ssi: Vx e/, f'(x)=0.

= Condition suffisante de stricte monotonie :
Si f/ > 0 sur [ et si f' ne s'annule qu'un nombre fini de fois, alors
f est strictement croissante sur /

Exemple 4

Montrer que la fonction f : x — 2x + cos(2x) est strictement
croissante sur [0, 27].



3 Rappels sur la dérivation

Théoréme 2

On suppose f dérivable sur /.

» f est croissante sur [ ssi: Vx el f'(x)>0.
» f est constante sur /'ssi: Vx e/, f'(x)=0.

= Condition suffisante de stricte monotonie :
Si f/ > 0 sur [ et si f' ne s'annule qu'un nombre fini de fois, alors
f est strictement croissante sur /

Exemple 5 : Un raisonnement par analyse-synthése

Trouver toutes les fonctions  : R — R dérivables telles que :

X—l—y)

Vx,y R, f(x) = fy) = (x = y)f'(—
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1 Définition et position par rapport aux cordes

Cadre

= [ est un intervalle

= f: | — R est une fonction définie sur /

Définition 1

La fonction f est convexe si pour tous a, b € [ :
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Cadre

= [ est un intervalle

= f: | — R est une fonction définie sur /

Définition 1

La fonction f est convexe si pour tous a,b € [ :
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1 Définition et position par rapport aux cordes

Cadre

= [ est un intervalle

= f: | — R est une fonction définie sur /

Définition 1

La fonction f est convexe si pour tous a,b € [ :

Vte[0,1], f((1—-t)a+tb) <(1-—t)f(a)+ tf(b)

AN

[décrit [a, b] lorsq ue]

Géométriquement t décrit [0, 1]

%r est en dessous de toutes ses cordes.

10



1 Définition et position par rapport aux cordes

La fonction f est convexe si pour tous a,b € [ :

Vte[0,1], f((1—t)a+tb)<(1-—t)f(a)+ tf(b)

t décrit [0, 1]

décrit [a, b] lorsque
Géométriquement

%r est en dessous de toutes ses cordes.

Exemple 1

0 2a 2b
Etablir : Va,beR, eatb < ede

10



1 Définition et position par rapport aux cordes

La fonction f est convexe si pour tous a,b € [ :

Vte [0,1], f((1—t)a+th) <(1-—t)f(a)—+ tf(b)

Géométriquement

% est en dessous de toutes ses cordes.

Remarque

La fonction f est concave si :

Va,bel, Vtel[0,1], f((1—t)a+tb)>(1—t)f(a)+ tf(b)

10



2 Caractérisations de la convexité

Remarque

La fonction f est concave si

Vtela,b], f((1—t)a+th) > (1—t)f(a)+ tf(b)

Il'y a équivalence entre :

i) f est convexe sur /

11



2 Caractérisations de la convexité

Remarque

La fonction f est concave si

Vtela,b], f((1—t)a+th) > (1—t)f(a)+ tf(b)

Il'y a équivalence entre :

i) f est convexe sur /

f(x) - f(a)

X —a

i) Pour tout a € /, la fonction 7, : x — est

croissante sur I\ {a}.
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2 Caractérisations de la convexité

Remarque

La fonction f est concave si

Vtela,b], f((1—t)a+th) > (1—t)f(a)+ tf(b)

Il'y a équivalence entre :

i) f est convexe sur /

f(x)—f
i) Pour tout a € /, la fonction 7, : x — M est

—a
croissante sur I\ {a}. x
fonction taux
d’accroissement de f en a

11



2 Caractérisations de la convexité

Il'y a équivalence entre :

i) f est convexe sur /

f(x)—f
i) Pour tout a € /, la fonction 7, : x — M

X—a
croissante sur [\ {a}. \

fonction taux
d’accroissement de f en a
Démontrer cette équivalence.




2 Caractérisations de la convexité

Il'y a équivalence entre :

i) f est convexe sur /

f(x)—f
i) Pour tout a € /, la fonction 7, : x — M

X—a
croissante sur [\ {a}. \

fonction taux
Exemple 2

est

d’'accroissement de f en a
Soit f : R — R, convexe et majorée. Montrer que f est constante.

11



3 Inégalités de convexité

= On suppose f dérivable sur /.
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Théoréme 2
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Inégalité des cordes

On suppose f convexe sur [. Soit a, b € [, distincts.

Pour tout x entre a et b : [f(x) < f(a)+ f(bg::(a)(x —a)

Théoréme 3

On suppose f dérivable sur /. Si f est convexe sur /, alors le graphe
de f est situé au-dessus de toutes ses tangentes.
Pour tous a,x € [ :
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Inégalité des cordes

On suppose f convexe sur [. Soit a, b € [, distincts.
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3 Inégalités de convexité

Inégalité des cordes

On suppose f convexe sur /. Soit a, b € [, distincts.

Pour tout x entre aet b: |f(x) < f(a) + bi(x —a)
—a

Théoréeme 3

On suppose f dérivable sur /. Si f est convexe sur /, alors le graphe
de f est situé au-dessus de toutes ses tangentes.
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3 Inégalités de convexité

Inégalité des cordes

On suppose f convexe sur /. Soit a, b € [, distincts.

Pour tout x entre aet b: |f(x) < f(a) + bi(x —a)
—a

Théoréeme 3

On suppose f dérivable sur /. Si f est convexe sur /, alors le graphe
de f est situé au-dessus de toutes ses tangentes.
Pour tous a,x € I 1 f(x) > f(a) + f'(a)(x — a)

Théoreme 4 : Inégalité de Jensen

On suppose f convexe sur [. Soit n € N*. Pour tous ai,...,a, € /
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Théoréme 4 : Inégalité de Jensen

On suppose f convexe sur [. Soit n € N*. Pour tous ai,...,a, € /

et t1,...,t, € [0,1] tels que Zt; =1: f(Zt,-a,-) < Zt,-f(a,-)
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Théoréme 4 : Inégalité de Jensen

On suppose f convexe sur [. Soit n € N*. Pour tous ai,...,a, € /
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3 Inégalités de convexité

Théoréme 4 : Inégalité de Jensen

On suppose f convexe sur [. Soit n € N*. Pour tous ai,...,a, € /

et t1,...,t, € [0,1] tels que Zt; =1: f(Zt,-a,-) < Zt,-f(a,-)
i=1 i=1

i=1

Cas particulier important

Avec t; = tp = 7t71 flgna <1§nf(a)
\V/ —1 — ... = = — = . - i
1 2 n ni:l/ ni:l i

>

Exemple 3 : Inégalité arithmético-géométrique

8 . Xy + -+ X
Soient x1,...,Xx, € R% . Etablir : Ari A > (x1...%n)



M Fonctions trigonométriques

I Fonctions trigonométriques

115)



Rappels

Rappel

Soit a, x, y € R. On dit que x est congru a y modulo « s'il existe
ke Ztelque: x=y+ ka.

Notation

On note alors :  x =y [a]

Exemple 1 : Modulo 27

a) 5 = [27]

b) 8r= [27]

c) 15m= [27]
I [27]

16
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Rappels

Rappel

Soit a, x, y € R. On dit que x est congru a y modulo « s'il existe
ke Ztelque: x=y+ ka.

Notation

On note alors :  x =y [a]

Exemple 1 : Modulo 27

™ 3w
a) 5= [27]
b) 8w =0 [27]
c) 15m= [27]
I [27]

16



Rappels

Rappel

Soit a, x, y € R. On dit que x est congru a y modulo « s'il existe
ke Ztelque: x=y+ ka.

Notation

On note alors :  x =y [a]

Exemple 1 : Modulo 27

156m = 7 [27]

EE T [27]

o o
N—r N— N N—r

o)

3

Il

o

N

A,

16



Rappels

Rappel

Soit a, x, y € R. On dit que x est congru a y modulo « s'il existe
ke Ztelque: x=y+ ka.

Notation

On note alors :  x =y [a]

Exemple 1 : Modulo 27

™ 3w
a) 5= [27]
b) 8w =0 [27]
c) 157 =7 [27]
d) ln _ @ _>7 [271]

16



1 Rappels sur les fonctions cosinus et sinus

Exemple 1 : Modulo 27

a) 2= 37” [27]
b) 8w =0 [27]

c) 157 =7 [27]
)

117 T 57
d) —=—-——-=— 1|2
3 3= 3 127
Exemple 2

Soit 0 € R. On pose: wp=1, w3 =cosf et:
VneN, upro=2up41c0s60 — up,

Démontrer que pour tout n € N:  u, = cos(nf).

17
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Théoreme 1 : Propriétés
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Théoreme 1 : Propriétés

i) cos et sin sont 2m-périodiques

ii) cos est paire, sin est impaire.

i) sin et cos sont dérivables et sin’ = cos et cos’ = —sin.



1 Rappels sur les fonctions cosinus et sinus

Théoreme 1 : Propriétés

i) cos et sin sont 2m-périodiques
ii) cos est paire, sin est impaire.

i) sin et cos sont dérivables et sin’ = cos et cos’ = —sin.

Théoreme 2 : Utilisation du cercle trigonométrique

= Pourtoutf e R :

= Réciproquement, pour tous x, y € R tels que x*> + y?> =1 :
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1 Rappels sur les fonctions cosinus et sinus

Théoreme 1 : Propriétés

i) cos et sin sont 2m-périodiques
ii) cos est paire, sin est impaire.

i) sin et cos sont dérivables et sin’ = cos et cos’ = —sin.

Théoreme 2 : Utilisation du cercle trigonométrique

» Pourtout € R: cos?6 +sin?f = 1.

= Réciproquement, pour tous x, y € R tels que x*> + y?> =1 :
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1 Rappels sur les fonctions cosinus et sinus

Théoreme 1 : Propriétés

i) cos et sin sont 2m-périodiques
ii) cos est paire, sin est impaire.

i) sin et cos sont dérivables et sin’ = cos et cos’ = —sin.

Théoreme 2 : Utilisation du cercle trigonométrique

» Pourtout € R: cos?6 +sin?f = 1.

= Réciproquement, pour tous x, y € R tels que x*> + y?> =1 :
x = cosf,

il existe 0 € R tel que : _
y =sinf

18



1 Rappels sur les fonctions cosinus et sinus

Théoréme 2 : Utilisation du cercle trigonométrique

» Pourtout 8 € R: cos?6 +sin?h =1.

= Réciproquement, pour tous x, y € R tels que x?> + y?2 =1 :

X = cos 0,
il existe 6 € R tel que : )
y =sind

Pour tous 0, p € R : Pour tous 0, p € R :

cos ) = cos p < sinf = sinp <

19



1 Rappels sur les fonctions cosinus et sinus

Théoréme 2 : Utilisation du cercle trigonométrique

» Pourtout 8 € R: cos?6 +sin?h =1.

= Réciproquement, pour tous x, y € R tels que x?> + y?2 =1 :

X = cos 0,
il existe 6 € R tel que : )
y =sind

Pour tous 0, p € R : Pour tous 0, p € R :

0 = p[2n]
cos ) = cosp < < ou sinf = sinp <
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1 Rappels sur les fonctions cosinus et sinus

Théoréme 2 : Utilisation du cercle trigonométrique

» Pourtout 8 € R: cos?6 +sin?h =1.

= Réciproquement, pour tous x, y € R tels que x?> + y?2 =1 :

X = cos 0,
il existe 6 € R tel que : )
y =sind

Pour tous 0, p € R : Pour tous 0, p € R :

0 = p[2n]
cos ) = cosp < < ou sinf = sinp <
= —y[27]

19
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1 Rappels sur les fonctions cosinus et sinus

Pour tous 6, p € R : Pour tous 6, € R :
0 = p[27] 0 = p[27]
cosf = cosp < < ou sinf =sinp < < ou
= —p[27] 0 =7 — ¢[2r7]
Exemple 3

Résoudre I'équation cos x = sin x d'inconnue x € R.
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On peut trouver un réel ¢ tel que :
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1 Rappels sur les fonctions cosinus et sinus

Théoréme 5 : Réduction de acost + bsint

Soient a, b € R tels que (a, b) # (0,0).
On peut trouver un réel ¢ tel que :

vVt € R, acost + bsint = v a? + b2 cos(t — ¢)

Exercice 1

Démontrer le théoréme en commencant par factoriser
acost+ bsint par Va2 + b2.
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1 Rappels sur les fonctions cosinus et sinus

Théoréme 5 : Réduction de acost + bsint

Soient a, b € R tels que (a, b) # (0,0).
On peut trouver un réel ¢ tel que :

vVt € R, acost + bsint = v/ a% + b?cos(t — )

Exemple 4
Trouver A et ¢ tels que pour tout t € R :

V2cost 4+ V6sint = Acos(t — ¢)
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1 Rappels sur les fonctions cosinus et sinus

Théoréme 5 : Réduction de acost + bsint

Soient a, b € R tels que (a, b) # (0,0).
On peut trouver un réel ¢ tel que :

vVt € R, acost + bsint = v/ a% + b?cos(t — )

Exemple 5

Résoudre I'équation cost+sint =1 d'inconnue t € R.
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2 la fonction tangente

La fonction tangente est définie sur D =R\ {5 + k7 ; k € Z}
sin
par : tan = —
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2 la fonction tangente

réels qui annulent cos
Définition 1

La fonction tangente est définie sur D =R\ {5 + k7 ; k € Z}

sin
par : tan = —
cos

i) tan est m-périodique.

ii) tan est impaire

i) tan est dérivable sur D et : [tan/ =——=1+ tan2]

Exercice 2

a) Prouver le point iii)) b) Démontrer la formule sur tan(a + b)
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