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1 Inégalités et opérations

Théorème 1 : Inégalités et opérations
Soient a, b, c, d , k ∈ R.
• Addition. si a ≤ b et c ≤ d : a + c ≤ b + d .
• Multiplication.

• par un réel positif. Si a ≤ b et k ≥ 0 : ka ≤ kb.
• par un réel négatif. Si a ≤ b et k ≤ 0 : ka ≥ kb
• d’inégalités positives. Si 0 ≤ a ≤ b et 0 ≤ c ≤ d : 0 ≤ ac ≤ bd

• Inverse. Si 0 < a ≤ b : 0 <
1
b ≤ 1

a .
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1 Inégalités et opérations

SF 1 : majorer une fraction de réels positifs
Il suffit de majorer le numérateur et minorer le dénominateur.

Exemple 1

Montrer que pour tout x ∈ [0 , 2] : 1
7 ≤ x + 1

x2 + 3 ≤ 1

Exemple 3

Résoudre dans R l’inéquation suivante : x + 1
x − 1 ≤ x − 2

x + 2
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1 Inégalités et opérations

SF 1 : majorer une fraction de réels positifs
Il suffit de majorer le numérateur et minorer le dénominateur.

Exemple 2

Résoudre dans R l’inéquation suivante : x + 1
x − 1 ≤ x − 2

x + 2
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2 Valeur absolue

Définition 1

• Définition. La valeur absolue de x est : |x | =

{
x si x ≥ 0,
−x si x ≤ 0.

• Pour tout x ∈ R :

|x | ≥ 0 et |x | = 0 ssi x = 0.

• Inégalités sur |x |. Pour tout x ∈ R :

− |x | ≤ x ≤ |x |.

• Règles de calcul.

•

|−x | = |x |

•

|xy | = |x | |y |

• Inégalité triangulaire. Pour tous x , y ∈ R :

|x + y | ≤ |x | + |y |.

4



2 Valeur absolue

Définition 1

• Définition. La valeur absolue de x est : |x | =
{

x si x ≥ 0,
−x si x ≤ 0.

• Pour tout x ∈ R :

|x | ≥ 0 et |x | = 0 ssi x = 0.

• Inégalités sur |x |. Pour tout x ∈ R :

− |x | ≤ x ≤ |x |.

• Règles de calcul.

•

|−x | = |x |

•

|xy | = |x | |y |

• Inégalité triangulaire. Pour tous x , y ∈ R :

|x + y | ≤ |x | + |y |.

4



2 Valeur absolue

Définition 1

• Définition. La valeur absolue de x est : |x | =
{

x si x ≥ 0,
−x si x ≤ 0.

• Pour tout x ∈ R :

|x | ≥ 0 et |x | = 0 ssi x = 0.
• Inégalités sur |x |. Pour tout x ∈ R :

− |x | ≤ x ≤ |x |.

• Règles de calcul.

•

|−x | = |x |

•

|xy | = |x | |y |

• Inégalité triangulaire. Pour tous x , y ∈ R :

|x + y | ≤ |x | + |y |.

4



2 Valeur absolue

Définition 1

• Définition. La valeur absolue de x est : |x | =
{

x si x ≥ 0,
−x si x ≤ 0.

• Pour tout x ∈ R : |x | ≥ 0 et |x | = 0 ssi x = 0.

• Inégalités sur |x |. Pour tout x ∈ R :

− |x | ≤ x ≤ |x |.

• Règles de calcul.

•

|−x | = |x |

•

|xy | = |x | |y |

• Inégalité triangulaire. Pour tous x , y ∈ R :

|x + y | ≤ |x | + |y |.

4



2 Valeur absolue

Définition 1

• Définition. La valeur absolue de x est : |x | =
{

x si x ≥ 0,
−x si x ≤ 0.

• Pour tout x ∈ R : |x | ≥ 0 et |x | = 0 ssi x = 0.
• Inégalités sur |x |. Pour tout x ∈ R :

− |x | ≤ x ≤ |x |.
• Règles de calcul.

•

|−x | = |x |

•

|xy | = |x | |y |

• Inégalité triangulaire. Pour tous x , y ∈ R :

|x + y | ≤ |x | + |y |.

4



2 Valeur absolue

Définition 1

• Définition. La valeur absolue de x est : |x | =
{

x si x ≥ 0,
−x si x ≤ 0.

• Pour tout x ∈ R : |x | ≥ 0 et |x | = 0 ssi x = 0.
• Inégalités sur |x |. Pour tout x ∈ R : − |x | ≤ x ≤ |x |.
• Règles de calcul.

•

|−x | = |x |

•

|xy | = |x | |y |

• Inégalité triangulaire. Pour tous x , y ∈ R :

|x + y | ≤ |x | + |y |.

4



2 Valeur absolue

Définition 1

• Définition. La valeur absolue de x est : |x | =
{

x si x ≥ 0,
−x si x ≤ 0.

• Pour tout x ∈ R : |x | ≥ 0 et |x | = 0 ssi x = 0.
• Inégalités sur |x |. Pour tout x ∈ R : − |x | ≤ x ≤ |x |.
• Règles de calcul. • |−x | = |x |

•

|xy | = |x | |y |

• Inégalité triangulaire. Pour tous x , y ∈ R :

|x + y | ≤ |x | + |y |.

4



2 Valeur absolue

Définition 1

• Définition. La valeur absolue de x est : |x | =
{

x si x ≥ 0,
−x si x ≤ 0.

• Pour tout x ∈ R : |x | ≥ 0 et |x | = 0 ssi x = 0.
• Inégalités sur |x |. Pour tout x ∈ R : − |x | ≤ x ≤ |x |.
• Règles de calcul. • |−x | = |x | • |xy | = |x | |y |

• Inégalité triangulaire. Pour tous x , y ∈ R :

|x + y | ≤ |x | + |y |.

4



2 Valeur absolue

Définition 1

• Définition. La valeur absolue de x est : |x | =
{

x si x ≥ 0,
−x si x ≤ 0.

• Pour tout x ∈ R : |x | ≥ 0 et |x | = 0 ssi x = 0.
• Inégalités sur |x |. Pour tout x ∈ R : − |x | ≤ x ≤ |x |.
• Règles de calcul. • |−x | = |x | • |xy | = |x | |y |
• Inégalité triangulaire. Pour tous x , y ∈ R :

|x + y | ≤ |x | + |y |.

4



2 Valeur absolue

Définition 1

• Définition. La valeur absolue de x est : |x | =
{

x si x ≥ 0,
−x si x ≤ 0.

• Pour tout x ∈ R : |x | ≥ 0 et |x | = 0 ssi x = 0.
• Inégalités sur |x |. Pour tout x ∈ R : − |x | ≤ x ≤ |x |.
• Règles de calcul. • |−x | = |x | • |xy | = |x | |y |
• Inégalité triangulaire. Pour tous x , y ∈ R : |x + y | ≤ |x | + |y |.

4



2 Valeur absolue

Définition 1

• Définition. La valeur absolue de x est : |x | =
{

x si x ≥ 0,
−x si x ≤ 0.

• Pour tout x ∈ R : |x | ≥ 0 et |x | = 0 ssi x = 0.
• Inégalités sur |x |. Pour tout x ∈ R : − |x | ≤ x ≤ |x |.
• Règles de calcul. • |−x | = |x | • |xy | = |x | |y |
• Inégalité triangulaire. Pour tous x , y ∈ R : |x + y | ≤ |x | + |y |.

SF 3 : Résoudre une inéquation avec des valeurs absolues
On distingue des cas pour éliminer les valeurs absolues.

Exemple 3
Résoudre l’inéquation |2 − x | + |2x + 4| ≤ 5 d’inconnue x ∈ R.
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2 Valeur absolue

Définition 1

• Définition. La valeur absolue de x est : |x | =
{

x si x ≥ 0,
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Exemple 4
Etablir, pour tous x , y ∈ R :
a) |x − y | ≤ |x | + |y |
b) |x − y | ≥ |x | − |y |
c) |x − y | ≥

∣∣ |x | − |y |
∣∣
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2 Valeur absolue

Théorème 2 : Interprétation géométrique
Soient x , a ∈ R et r ∈ R+.
• |x | ≤ r si et seulement si : −r ≤ x ≤ r .
• |x − a| ≤ r ssi :

x ∈

[a − r , a + r ]

Lien avec la racine carrée Soit x ∈ R et soit a ≥ 0

•
√

x2 =

|x |

• x2 = a ssi

|x | =
√

a i.e. x = ±
√

a

• x2 ≤ a ssi

−
√

a ≤ x ≤
√

a

Exemple 5
Résoudre l’inéquation : 2x ≤

√
x2 + 1 d’inconnue x ∈ R.
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3 Partie entière d’un réel x

Définition 2

• La partie entière de x est le plus :

grand entier inférieur ou égal à
x . On le note ⌊x⌋

• Pour n ∈ Z, n = ⌊x⌋ ssi :

{
n ≤ x ➀

n + 1 > x

➁

Inégalités à retenir
1. ⌊x⌋ ≤ x < ⌊x⌋ + 1 2. x − 1 < ⌊x⌋ ≤ x

Exemple 6
a) ⌊3.745⌋ =

3

⌊−2.1⌋ =

−3
b) Montrer que pour tout x ∈ R : ⌊x + 1⌋ = ⌊x⌋ + 1.
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1 Fonctions monotones

Définition 1

• f est croissante sur D si pour tous x , y ∈ D :

x ≤ y =⇒ f (x) ≤ f (y).

• f est strictement croissante sur D si pour tous x , y ∈ D :

x < y =⇒ f (x) < f (y).

• f est décroissante sur D si pour tous x , y ∈ D :

x ≤ y =⇒ f (x) ≥ f (y).

• f est strictement décroissante sur D si pour tous x , y ∈ D :

x < y =⇒ f (x) > f (y).

Exemple 1
Montrer que pour tout x > 0 :
a) ln(x + 1) − ln(x) ≥ 0 b) (x + 1) ln(x + 1) − x ln(x) ≥ 0
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1 Fonctions monotones

Théorème 1
Si f et g sont croissantes sur D, alors :

f + g est croissante sur D

Exercice 1
Démontrer ce théorème.

résultat analogue lorsque
f et g sont décroissantes

9
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2 Fonctions majorées, minorées, bornées

Définition 2
f est dite :
• majorée si :

∃M ∈ R | ∀x ∈ D,

f (x) ≤ M
• minorée si :

∃m ∈ R | ∀x ∈ D, f (x) ≥ m

• bornée si :

elle est majorée et minorée.
C’est équivalent à : ∃K ∈ R+ | ∀x ∈ D, |f (x)| ≤ K .

Exercice 2
Démontrer l’équivalence de la définition 2.
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2 Fonctions majorées, minorées, bornées

Définition 3
f possède un maximum en a si :

∀x ∈ D, f (x) ≤ f (a)

Notation
On note : f (a) = max

x∈D
f (x) ou f (a) = max

D
f .

Exemple 2

Montrer que pour tout x ∈ [0 , 2] : 1
3 ≤ x + 1

x2 + 3 ≤ 1
2.
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3 Etudier une fonction pour établir une inégalité

Exemple 3

a) Montrer que pour tout x > −1 : ln(1 + x) ≤ x .
b) Interpréter graphiquement cette inégalité.

Exemple 4

Montrer que pour tout x ∈ ]0 , 1[ ∪ ]1 , +∞[ : x + 1
x − 1 ln x ≥ 2.
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3 Etudier une fonction pour établir une inégalité

Cadre

• I est un intervalle de R
• f : I → R est une fonction dérivable sur I

Théorème 2 : Cas d’une fonction convexe
Si f ′ est croissante sur I :
• Pour tous a, x ∈ I :

f (x) ≥ f (a) + f ′(a)(x − a)
• Pour tous a, b ∈ I tels que a < b

et tout x ∈ [a , b] :

f (x) ≤ f (a) + f (b) − f (a)
b − a (x − a)

Exercice 3
Démontrer le premier point.

équation de la
tangente à f en a

équation de la
corde

13
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3 Etudier une fonction pour établir une inégalité

SF 7 : Etablir une inégalité du type « ∀x ∈ D, f (x) ≤ g(x) »

Lorsque f est dérivable et convexe :
• Tangentes : ∀a, x ∈ I, f (x) ≥ f (a) + f ′(a)(x − a)

• Cordes : ∀x ∈ [a , b], f (x) ≤ f (a) + f (b) − f (a)
b − a (x − a)

Exemple 5
Etablir :
a) ∀x ∈ R, ex ≥ 1 + x
b) ∀x > −1, ln(1 + x) ≤ x

c) ∀x ∈ [0 , π
2 ], sin x ≥ 2x

π
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Quelques règles de rédaction autour des fonctions

Ne pas confondre f et f (x)

Mal
la fonction f (x) = e2x + 1
f (x) est dérivable sur R(

e2x + 1
)′ = 2e2x

Bien
la fonction f : x 7→ e2x + 1

f est dérivable sur R
f ′(x) = 2e2x

j et pas : f (x)′ j

15
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III Raisonnements par récurrence

I Manipuler des inégalités

II Fonctions et inégalités

III Raisonnements par récurrence

IV Inégalité des accroissements finis
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Notations

Intervalles d’entiers
Pour a, b ∈ Z on pose : Ja , bK =

{n ∈ Z | a ≤ n ≤ b}

j Attention j

L’intervalle Ja , bK possède :

b − a + 1

éléments.

Définition 1
Pour n ∈ N∗, on appelle factorielle n l’entier

n! = 1 × 2 × · · · × n
• Par convention : 0! = 1
• Relation de récurrence. Pour tout n ∈ N :

(n + 1)! = (n + 1) × n!

Exemple 1
Soient n, p ∈ N∗.
Ecrire les expressions suivantes à l’aide de factorielles :
a) A = (p + 1) × (p + 2) × · · · × (p + n).
b) B = 2 × 4 × · · · × 2p.
c) C = 1 × 3 × · · · × (2p + 1).
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1 Récurrence simple

Cadre : P désigne une propriété qui s’applique aux entiers naturels.

Le principe de récurrence
Si • P(0) est vraie

• P est « héréditaire » i.e. :

∀n ∈ N, (P(n) =⇒ P(n + 1))

alors la propriété P(n) est vraie pour tout n ∈ N.

Exemple 2
Soit x ∈ R. Montrer que pour tout n ∈ N : |sin(nx)| ≤ n |sin x |.
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2 Variantes du principe de récurrence

Principe de récurrence double
Si : • P(0) et P(1) sont vraies

• ∀n ∈ N,
(
P(n) et P(n + 1)

)
=⇒ P(n + 2)

alors la propriété P(n) est vraie pour tout n ∈ N.

Exemple 3
On définit la suite (un)n∈N∗ par u1 = 1, u2 = 2 et :

∀n ∈ N∗, un+2 = un+1 + un

Démontrer que pour tout n ∈ N∗ : un ≥ n.
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Principe de récurrence double
Si : • P(0) et P(1) sont vraies

• ∀n ∈ N,
(
P(n) et P(n + 1)

)
=⇒ P(n + 2)

alors la propriété P(n) est vraie pour tout n ∈ N.

Exemple 4
On définit la suite (un)n∈N par u0 = u1 = 1 et :

∀n ∈ N, un+2 = un+1 + un
n + 1

Démontrer que pour tout n ∈ N∗ : 1 ≤ un ≤ n2.
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2 Variantes du principe de récurrence

Principe de récurrence forte
Si : • P(0) est vraie

• ∀n ∈ N,
(
P(0), P(1), . . . , P(n)

)
=⇒ P(n + 1)

alors la propriété P(n) est vraie pour tout n ∈ N.

Exemple 5
Soit (un)n∈N une suite réelle.

On suppose que u0 = 1 et que pour tout n ∈ N : un+1 ≤
n∑

k=0
uk .

Démontrer que pour tout n ∈ N : un ≤ 2n.
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IV Inégalité des accroissements finis

I Manipuler des inégalités

II Fonctions et inégalités

III Raisonnements par récurrence

IV Inégalité des accroissements finis
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1 L’inégalité des accroissements finis

Théorème 1 : Admis provisoirement
Soit I un intervalle et f : I → R une fonction dérivable.
On suppose que f ′ est bornée sur I

il existe k ∈ R+ tel que :

∀x ∈ I,
∣∣f ′(x)

∣∣ ≤ k

Alors :
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1 L’inégalité des accroissements finis

Théorème 1 : Admis provisoirement
Soit I un intervalle et f : I → R une fonction dérivable.
On suppose que f ′ est bornée sur I il existe k ∈ R+ tel que :

∀x ∈ I,
∣∣f ′(x)

∣∣ ≤ k

Alors : ∀x , y ∈ I, |f (x) − f (y)| ≤ k |x − y | .

f est k-lipschitzienne
Figure
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1 L’inégalité des accroissements finis

Théorème 1 : Admis provisoirement
Soit I un intervalle et f : I → R une fonction dérivable.
On suppose que f ′ est bornée sur I il existe k ∈ R+ tel que :

∀x ∈ I,
∣∣f ′(x)

∣∣ ≤ k

Alors : ∀x , y ∈ I, |f (x) − f (y)| ≤ k |x − y |.

Exemple 1

Montrer que f : x 7→ ex

ex + 1 est 1
4-lipschitzienne sur [0 , 1].
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1 L’inégalité des accroissements finis

Théorème 1 : Admis provisoirement
Soit I un intervalle et f : I → R une fonction dérivable.
On suppose que f ′ est bornée sur I il existe k ∈ R+ tel que :

∀x ∈ I,
∣∣f ′(x)

∣∣ ≤ k

Alors : ∀x , y ∈ I, |f (x) − f (y)| ≤ k |x − y |.

Exemple 2
a) Montrer : ∀x ∈ R, |sin x | ≤ |x |
b) Montrer : ∀x ∈ R+, 0 ≤ ln(1 + x) ≤ x .
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2 Notions sur les suites récurrentes du type un+1 = f (un)

Définition 1
Un intervalle I ⊂ D est stable par f si f (I) ⊂ I i.e. :

∀x ∈ I, f (x) ∈ I
f (I) =

déf.
{f (x) ; x ∈ I}

En pratique
Si u0 ∈ I, alors (un)n∈N est bien définie et à termes dans I.

Exemple 3
On cherche à définir (un)n∈N par la relation : un+1 =

√
2 − un

1. Montrer que la suite (un)n∈N n’est pas définie si u0 /∈ [−2 , 2].
2. Montrer que la suite (un)n∈N est bien définie si u0 ∈ [−2 , 2].
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2 Notions sur les suites récurrentes du type un+1 = f (un)

Théorème 2 : Critère « f (ℓ) = ℓ »

Si (un) converge vers ℓ ∈ D et si f est continue en ℓ , alors ℓ est un
point fixe de f : f (ℓ) = ℓ
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3 Application à l’étude de suites du type un+1 = f (un).

Exemple 4
Soit u0 ∈ [0 , 1]. On considère la suite (un)n∈N telle que pour tout
n ∈ N : un+1 = eun

eun + 1.

1. Montrer que (un)n∈N est bien définie et à valeurs dans [0 , 1].
2. Montrer qu’il existe un unique α ∈ [0 , 1] tel que f (α) = α.
3. Montrer que la suite (un)n∈N converge vers α.
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