
L’anneau Z/nZ
• Cadre. n est un entier naturel non nul.

1 L’ensemble Z/nZ des classes d’équivalence modulo n

• Relation d’équivalence. La relation de congruence modulo n est une relation d’équivalence sur Z.
• Classes d’équivalences. Pour tout x ∈Z, on note x la classe d’équivalence de x : x = {x+ kn ; k ∈Z}.
• Retenir : Par construction, pour tous x,y ∈Z : x = y ⇐⇒ x ≡ y [n]

Rappels : classes de congruences modulo n

On note
Z

nZ
l’ensemble des classes d’équivalences pour la relation de congruences modulo n :

Z

nZ
=

déf.

{
0 , 1, . . . , n− 1

}Définition 1

• Remarque.
Z

nZ
est un ensemble fini de cardinal n

2 Structure d’anneau sur Z/nZ
Exercice 1 — Soient x,x′ , y,y′ ∈Z. Montrer que si x = y et x′ = y′, alors : x+ x′ = y + y′ et xx′ = yy′

Le résultat de l’exercice qui précède permet 1 de définir deux lois de compositions internes sur
Z

nZ
:

Pour tous x,y ∈Z on pose : x+ y =
déf.

x+ y et x× y =
déf.

x × y.

Définition 2

(
Z

nZ
,+,×

)
est un anneau commutatif, d’éléments neutres 0 pour + et 1 pour ×.

Théorème 1

• Reformulation du petit théorème de Fermat dans Z/pZ.

Pour tout p ∈ P et tout x ∈ Z
pZ

: • xp = x • Si x , 0, alors : xp−1 = 1.

Exercice 2 — Montrer que f : x 7→ x est un morphisme d’anneau de Z sur
Z

nZ
.

Exemple 1 — On suppose que n ≥ 2 n’est pas premier. Montrer que
Z

nZ
n’est pas un anneau intègre.

3 Eléments inversibles de Z/nZ

Pour tout a ∈Z : a ∈U
(
Z

nZ

)
⇐⇒ a∧n = 1

Théorème 2 : Inversibles de Z/nZ

Il suffit de trouver une relation de Bézout entre a et n : si on trouve u,v ∈Z tels que au + bn = 1 alors u = a−1.

En pratique : pour inverser a modulo n

Exemple 2 — Résoudre l’équation : 2x = 3 d’inconnue x ∈ Z
37Z

.

On suppose n ≥ 2.
Z

nZ
est un corps si et seulement si n est premier.

Théorème 3

Exemple 3 — Soit p un nombre premier.

1. Soit x ∈ Z
pZ

, non nul. Montrer que : x = x−1 si et seulement si x = 1 ou x = −1.

2. Démontrer le théorème de Wilson : (p − 1)! ≡ −1 [p]. Indication : Multiplier tous les éléments non nuls de
Z

pZ

1. Les égalités x+ x′ = y + y′ et xx′ = yy′ sont cruciales pour définir l’addition et la multiplication sur
Z

nZ
. Par exemple il est naturel

de définir dansZ/7Z la somme 2+4 par : 2+4 =
déf.

2 + 4 = 6. Cependant, vu que 2 = 9, il convient de s’assurer que 9 + 4 et 2 + 4 sont égaux.



Exercice 1 — Supposons que x = y et x′ = y′.
On sait donc que : x ≡ y [n] et x′ ≡ y′ [n].
Ainsi : x+ x′ ≡ y + y′ [n] et xx′ ≡ yy′ [n]

Dit autrement : x+ x′ = y + y′ et xx′ = yy′.

Démonstration du théorème 1.
Il s’agit de montrer que :

i)
(
Z

nZ
,+
)

est un groupe commutatif, d’élément

neutre 0.
ii) La loi × :

• est associative et commutative 2

• possède 1 pour élément neutre.
iii) × est distributive sur +.

Détaillons le point i). On sait déjà que + est une loi

de composition interne sur
Z

nZ
. Soient x,y,z ∈Z :

• Commutativité de +. x+ y = x+ y = y + x = y + x.
• Associativité de +.(
x+ y

)
+ z = x+ y + z = (x+ y) + z

= x+ (y + z) = x+ y + z = x+
(
y + z

)
• Element neutre pour +.

x+ 0 = x+ 0 = x et 0 + x = 0 + x = x

• « inverse » de x pour +.

Montrons que x est inversible dans
(
Z

nZ
,+
)
, d’in-

verse −x. Pour cela on calcule :

x+−x = x+ (−x) = 0 et −x+ x = (−x) + x = 0

Exercice 2 — • Par définition de f : f (1) = 1

(qui est bien l’élément neutre de
Z

nZ
pour ×).

• Soient x,y ∈Z, par définition de f et des deux

opérations × et + sur
Z

nZ
:

f (x+y) =
déf. de f

x+ y =
déf. de +

x+y =
déf. de f

f (x)+f (y)

et

f (x×y) =
déf. de f

x × y =
déf. de ×

x×y =
déf. de f

f (x)×f (y)

Exemple 1 — Par hypothèse, il existe deux entiers
d,q ∈ ⟦2 ,n− 1⟧ tels que : n = dq.
Ainsi : d×q = 0 alors que : d , 0 et q , 0

Démonstration du théorème 2. Soit a ∈Z.

a ∈U
(
Z

nZ

)
⇐⇒∃u ∈Z | a×u = u × a = 1

⇐⇒∃u ∈Z | au = 1

⇐⇒∃u ∈Z | au ≡ 1 [n]

⇐⇒∃u,v ∈Z | au +nv = 1

⇐⇒
Bézout

a∧n = 1

Exemple 2 —

2 est inversible dans
Z

37Z
car 2∧ 37 = 1.

De plus : 2−1 = 19. En effet :
• Première possibilité On constate directement que

2× 19 = 38 ≡ 1 [37]

• Deuxième possibilité On détermine une relation de
Bézout entre 2 et 37, ici : 2× 19− 1× 37 = 1

Soit x ∈ Z
37Z

:

2× x = 3 ⇐⇒ x = 2−1 ×3 ⇐⇒ x = 19×3 = 57 = 20

L’équation possède 20 comme unique solution.

Démonstration du théorème 3.
On a déjà vu que si n n’est pas premier, alors

Z

nZ
n’est pas intègre, en particulier, ce n’est pas un
corps 3.
Supposons que n est un nombre premier.

Montrons que
Z

nZ
est un corps.

On sait déjà que
Z

nZ
est un anneau commutatif.

Il reste à montrer que tout élément autre que 0 est
inversible.
Soit x ∈ Z

nZ
, tel que : x , 0 i.e. : x , 0 [n].

Ainsi n ne divise pas x.
Puisque n est premier : n∧ x = 1.
D’après le théorème 2, x est inversible.

Exemple 3 —
1. On procède par équivalence.

x = x−1 ⇐⇒ x2 = 1 ⇐⇒ (x −1)(x+ 1) = 0

Puisque
Z

pZ
est un corps, c’est un anneau in-

tègre a donc, finalement :

x = x−1 ⇐⇒ x = 1 ou x = −1

2. Posons P =
∏

x∈Z/pZ
x,0

x.

Calculons P de deux façons :
• Première façon.

P =
p−1∏
k=1

k = (p − 1)!

• Deuxième façon. Dans le produit P , tout facteur
x autre que 1 et −1 peut être regroupé avec son
inverse x−1 et le résultat vaut x × x−1 = 1 qui
est neutre pour ×, le produit se réduit donc au
seuls facteurs 1 et −1 et vaut :

P = 1× (−1) = −1

En conséquence : (p − 1)! = −1.
Autrement dit : (p − 1)! ≡ −1 [p].

a. Le vérifier à titre d’exercice

2. Rappel : l’anneau est ici commutatif si × l’est, dans la définition d’un anneau la loi + est toujours commutative

3. Si d,q ∈ Z
nZ

sont deux éléments non nuls tels que d × q = 0, alors ils ne sont pas non plus inversibles (en effet, si l’on suppose par

l’absurde que d est inversible, alors en multipliant l’égalité d × q = 0 par d−1, on obtient q = 0 ce qui est faux)


