Lanneau Z/nZ

e Cadre. n est un entier naturel non nul.
1 Lensemble Z/nZ des classes d’équivalence modulo »
Rappels : classes de congruences modulo 7

Relation d’équivalence. La relation de congruence modulo 7 est une relation d’équivalence sur Z.
o Classes d’équivalences. Pour tout x € Z, on note X la classe d’équivalence de x: X={x+kn; k € Z}.

Retenir : Par construction, pour tous x,y € Z : [9? =7 & x=Yy [n]]

Définition 1

V4 Z =
On note 7 I’ensemble des classes d’équivalences pour la relation de congruences modulon:| — = {0, 1,...,n— 1}]

Z
* Remarque. e est un ensemble fini de cardinal n

2 Structure d’anneau sur Z/nZ

Exercice 1 — Soient x,x’,v,7” € Z. Montrer quesi =7 et x' =p/, alors: x+xX' =p+p et xxX'=py

Le résultat de l'exercice qui précéde permet ! de définir deux lois de compositions internes sur — :

Définition 2
Pour tous x,y € Zonpose: X+7 = X+y et XxXT = XXU.
: :

(—,+, ><) est un anneau commutatif, d’éléments neutres 0 pour + et 1 pour x.

nZ

» Reformulation du petit théoréme de Fermat dans Z/pZ.

Z S _
PourtoutpeIPettoutxeﬁ: exP=x ¢Six=0,alors: xP1=T.
- _— : 7, Z
Exercice 2 — Montrer que f : x > X est un morphisme d’anneau de Z sur —.

. Z N
Exemple 1 — On suppose que n > 2 n’est pas premier. Montrer que 7 n'est pas un anneau integre.
n

3 Eléments inversibles de Z/nZ

Théoreme 2 : Inversibles de Z/nZ

Z
Pour toutae Z : an(—) — aAn=1
nZ.

En pratique : pour inverser 2 modulo »

I1 suffit de trouver une relation de Bézout entre a et n : si on trouve u,v € Z tels que au + bn =1 alors 7 = al.

- = z
Exemple 2 — Résoudre I’équation: 2x =3 d’inconnue x € 377

Théoreme 3

z . ] q
On suppose 1 > 2. "7 est un corps si et seulement si n est premier.

Exemple 3 — Soit p un nombre premier.

. V4 . L = —
1. Soit x € ——»non nul. Montrer que : x =x""! si et seulement si x=1 ou x = —1.
p

2. Démontrer le théoréeme de Wilson : (p — 1)! = —1 [p]. Indication : Multiplier tous les éléments non nuls de 0z

— — — z
1. Les égalités x+x" =p+y’ et xx’=yy’ sont cruciales pour définir I'addition et la multiplication sur "z Par exemple il est naturel
n

de définir dans Z/7Z la somme 2+4 par: 2+4 o 2+4=6. Cependant, vu que 2 =9, il convient de s’assurer que 9 + 4 et 2 + 4 sont égaux.
er.



Exercice 1 — Supposons que X = y et x_ y

On sait doncque: x=7yp [n] et v’ [n].
Ainsi: x+x'=y+v' [n] et x—yy [ ]
Dit autrement: x+x =yp+y’ et xx'=ypy’.

Démonstration du théoréme 1.
Il s’agit de montrer que :
) ( V4 N
1 e
nZ |
neutre 0.
ii) Laloi x:
o est associative et commutative 2
o posséde 1 pour élément neutre.

iii) x est distributive sur +.
Détaillons le point i). On sait déja que + est une loi

) est un groupe commutatif, d’élément

de composition interne sur 7 Soient x,v,z€ Z:
n

FU=7+x

* Commutativité de +. X+7 =
e Associativité de +.
(F+7)+Z2=TFp+Z=(x+1)+z

=x+(y+2)=%

* Element neutre pour +.

X+0=x+0=Xx et 0+x=0+x

* «inverse » de X pour +.
Montrons que X est inversible dans (—,+
verse —x. Pour cela on calcule :

X+=X% :x+(—x):6 et “X+X=(-x)+x=0

f)=1

(qui est bien I’élément neutre de —~ pour ).
n

Exercice 2 —  Par définition de f :

 Soient x,y € Z, par définition de f et des deux
z

nZ

X+ = X+ = X
Y déf. de + Y déf. de f f(

opérations X et + sur

fx+
et

flx

V) )+f(v)

déf. de f

= Wy = f)xf(y)

xy) = XX
déf. de x déf. de f

déf. de f

A

Exemple 1 — Par hypotheése, il existe deux entiers
d,qef2,n—1] telsque: n=dq.
Ainsi: dxg=0 alorsque: d=0

et g=0

Démonstration du théoreme 2. Soit a € Z.
ae U(—

—du,veZ | au+nv=1

—aAn=1
Bézout

Exemple 2 —

2esti ible d z 2A37=1
est 1inversivle dans —— r = 1.
37Z

De plus : 27! =T9. En effet :
Premieére possibilité On constate directement que

2x19=38=1 [37]
Deuxieme possibilité On détermine une relation de
Bézout entre 2 et 37,ici: 2x19-1x37=1

Soit x € z
37Z
Ixx=3 & x=2 'x3 & x=19x3=57=20

L'équation posséde 20 comme unique solution.
Démonstration du théoreme 3. 7
On a déja vu que si n n’est pas premier, alors i
n
n’est pas integre, en particulier, ce n’est pas un
corps?
Supposons que # est un nombre premier.

Montrons que —; est un corps.
que —— P

On sait déja que P est un anneau commutatif.
n

Il reste & montrer que tout élément autre que 0 est
inversible,

Soit X € e telque: x=0 ie: x=0[n].
n

Ainsi n ne divise pas x.

Puisque n est premier: nAx=1.

D’apres le théoreme 2, X est inversible.

Exemple 3 —
1. On procede par équivalence.

x=x! = x¥*=T = (x-T)(x+1)=0
. Z .
Puisque —7 estun corps, c’est un anneau in-

tegre” donc, finalement :
-1

x=x" e x=1 ou x=-1
2. Posons P = ]_[ X.
xeZ/pZ
x=0

Calculons P de deux facons :
* Premiere facon.

p-1
P=[[r=Tp=1)
k=1

* Deuxieme facon. Dans le produit P, tout facteur
x autre que 1 et —1 peut étre regroupé avec son
inverse X! et le résultat vaut xxx ! = T qui
est neutre pour X, le produit se réduit donc au
seuls facteurs 1 et —1 et vaut :

P=Tx(-T)=
(p-1)=
(p — 1 | =—

En conséquence :
Autrement dit :

a. Le vérifier a titre d’exercice

2. Rappel : I'anneau est ici commutatif si x l’est, dans la définition d’un anneau la loi + est toujours commutative

3. Sid,qe "z sont deux éléments non nuls tels que d x g = 0, alors ils ne sont pas non plus inversibles (en effet, si l'on suppose par
n

l'absurde que d est inversible, alors en multipliant I’égalité d x g = 0 par d~!, on obtient g = 0 ce qui est faux)



