
PRIMITIVES II Méthodes directesIII Développements limités Analyse Asymptotique

Développements limités usuels

Développement limité à tout ordre En particulier Equivalent
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• Remarque. Même si α n’est pas un entier naturel, on pose pour tout k ∈N :
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Exemple 3 — Donner les développements limités à l’ordre 3 en 0 de :
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