
RAPPELS ET COMPLEMENTS SUR LES FONCTIONS I Dérivation: rappels de terminale

I Tableaux récapitulatifs des dérivées Rappels et compléments sur les fonctions

Dérivées des fonctions usuelles
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Dérivées des fonctions composées usuelles
fonction : dérivée condition sur u
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■ Opérations algébriques
u et v sont dérivables sur un intervalle I
λ et µ sont réels

Opérations algébriques sur les
dérivées
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