
EQUATIONS DIFFERENTIELLES LINEAIRES II II 3 Equation homogène du second ordreII Suites particulières Suites – niveau 1
■ Objectif de cette note

Etant donné (a,b) ∈K2 \{(0,0)}, on considère une
suite (un) vérifiant la relation de récurrence :

∀n ∈N, un+2 = aun+1 + bun. (⋆)

On cherche une expression de un en fonction de n.
■ Equation caractétistique

On rappelle que l’équation caractéristique est
l’équation du second degré d’inconnue λ ∈C :

λ2 − aλ− b = 0 (C )

Cette équation apparaît naturellement lorsque l’on
cherche des suites géométriques vérifiant (⋆)

Soit λ ∈K. La suite (λn) vérifie la relation de ré-
currence (⋆) ssi λ est solution de (C ).

Théorème 1

Démonstration. Pour tout n ∈N :

λn+2 − aλn+1 − bλn = λn(λ2 − aλ− b).

■ Structure de l’ensemble des solutions de (⋆)
Notons E l’ensemble de toutes les suites u ∈KN

vérifiant (⋆).
Il n’est pas difficile de montrer que E est stable par
combinaison linéaires au sens suivant :

Soient u,v ∈ E.
Pour tous A,B ∈K : (Aun +Bvn)n∈N ∈ E.

Théorème 2

Enfin, une suite de (E) est entièrement déterminée
par ses deux premiers termes :

L’application Φ : E −→ K
2

u 7−→ (u0,u1)
est bijective.

Théorème 3

• Démonstration.
• Injectivité. Soient u,v ∈ E telles que : Φ(u) = Φ(v).

Par hypothèse : u0 = v0 et u1 = v1.
Grâce à la relation (⋆) on en déduit par récurrence
double que un = vn pour tout n ∈N.

• Surjectivité. Soit (α,β) ∈K2.
On définit u ∈ KN par : u0 = α, u1 = β puis
un+2 = aun+1 + bun pour tout n ∈N.
Par construction : u ∈ E et Φ(u) = (α,β).
■ Expression du terme général lorsque K =C

• Si (C ) a deux racines distinctes λ1 et λ2
dans C, alors il existe A,B ∈C tels que :

∀n ∈N, un = Aλn
1 +Bλn

2 .

• Si (C ) a une racine double λ0 dans C, alors
il existe A,B ∈C tels que :

∀n ∈N, un = (A+Bn)λn
0 .

Théorème 4

Démonstration.
• Idée : d’après le théorème 3, deux suites de E sont
égales si elles ont les mêmes termes de rang 0 et 1. Dans
chacun des cas, on choisit A et B de sorte que (un) coïn-
cide au rangs 0 et 1 avec (Aλn

1 +Bλn
2) (pour le premier

cas) ou avec ((A+Bn)λn
0) (pour le second).

• Cas où C possède deux racines distinctes λ1 et λ2. No-
tons alors qu’il existe un unique couple (A,B) dans

C
2 tel que

{
A+ B = u0

Aλ1 +Bλ2 = u1
.

En effet, il s’agit d’un système de deux équations
d’inconnue (A,B) ayant pour déterminant λ2−λ1 , 0.
A et B étant ainsi choisis, la suite (vn) définie par
vn = Aλn

1 +Bλn
2 coïncide avec (un) aux rangs 0 et 1.

De plus (vn) vérifie la relation (⋆) (d’après les deux
premiers constats). Par conséquent, les suites u et v
sont égales (d’après le dernier constat).
• Cas où C possède une racine double λ0. Notons que
cette racine est non nulle (car (a,b) , (0,0)). De plus,
la suite (λn

0) vérifie (⋆). Il en va de même de la suite
(nλn

0). En effet, pour tout n ∈N :

(n+ 2)λn+2
0 − a(n+ 1)λn+1

0 − bnλn
0

= λn
0

(
n(λ2

0 − aλ0 − b) +λ0(2λ0 − a)
)

Cette dernière quantité est nulle car λ2
0 − aλ0 − b = 0

(puisque λ0 est racine de (C )) et car λ0 = −a/2 (ceci
puisque λ0 est la racine double de C ).
Par conséquent, toute suite de la forme (Aλn

0 +Bnλn
0)

vérifie (⋆). Aussi, il est possible de trouver A et B tels
que (Aλn

0 + Bnλn
0) coïncide avec (un) aux deux pre-

miers rangs. Il suffit en effet de choisir A = u0 puis
B = u1

λ0
−u0. Comme précédemment, il en résulte que

un = Aλn
0 +Bnλn

0 pour tout n ∈N.

■ Expression du terme général lorsque K =R
On ne démontre ici que le cas où C possède un

discriminant strictement négatif (le cas d’un discri-
minant strictement postif et celui d’un discriminant
nul se traitent de même que dans C).

Si (C ) a deux racines non réelles λ = reiθ et λ
dans C, alors il existe A,B ∈R tels que :

∀n ∈N, un = rn(Acos(nθ) +Bsin(nθ)) .

Théorème 5

Démonstration. La suite (λn) vérifie encore la rela-
tion (⋆) (dans C). Aussi, puisque a et b sont réels,
on voit en prenant la partie réelle ou imaginaire
dans (⋆) que les suites (Re(λn)) = (rn cos(nθ)) et
(Im(λn)) = (rn sin(nθ)) vérifient elles aussi cette rela-
tion de récurrence. D’après nos premiers constat,
il en va de même de toute suite de la forme
(Arn cos(nθ) + Brn sin(nθ)). Aussi, on peut trouver
A et B tels que (Arn cos(nθ) + Brn sin(nθ)) coïncide
avec (un) aux deux premiers rangs. Il suffit en effet de
choisir A = u0 puis B tel que Ar cosθ +Br sinθ = u1
(c’est possible puisque θ , 0 [π], ceci car λ n’est
pas réelle). Il s’ensuit comme précédemment que
un = Arn cos(nθ) +Brn sin(nθ) pour tout n ∈N.


