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■ Objectif de cette note

Etant donnés a,b ∈K, on cherche ici à résoudre
l’équation différentielle homogène du second ordre :

y′′ + ay′ + by = 0. (E0)

On rappelle que l’équation caractéristique est l’équa-
tion du second degré d’inconnue λ ∈C :

λ2 + aλ+ b = 0 . (C )

On note ∆ le discriminant de (C ) et λ1 et λ2
ses racines complexes, éventuellement confondues.
Lorsque ∆ = 0, on notera λ0 la racine double (dans
ce cas : λ1 = λ2 = λ0). On sait que λ1 +λ2 = −a et
donc 2λ1 + a = λ1 −λ2.
■ Résolution de (E0) si K =C

1. Si (C ) a deux racines distinctes λ1 et λ2,
alors les solutions de (E0) sont les fonctions
de la forme :

y(t) = Aeλ1t +Beλ2t , avec A,B ∈C .

2. Si (C ) a une racine double λ0 , alors les solu-
tions de (E0) sont les fonctions de la forme :

y(t) = (At +B)eλ0t , avec A,B ∈C .

Théorème 1

Démonstration. L’idée est de se ramener au cas d’une
équation d’ordre 1 par un changement de fonction in-
connue.
Soit y : R → C, deux fois dérivable. La fonction
z : t 7→ e−λ1ty(t) est elle-même deux fois dérivable et,
en dérivant deux fois la relation y = eλ1tz, on obtient
pour tout t ∈R,

y′′(t)+ay′(t) + by(t)

=
(
z′′(t) + (2λ1 + a)z′(t) + (λ2

1 + aλ1 + b)z(t)
)
eλ1t

=
(
z′′(t) + (2λ1 + a)z′(t)

)
eλ1t

=
(
z′′(t) + (λ1 −λ2)z′(t)

)
eλ1t

Ainsi y est solution de (E0) si et seulement si z′ véri-
fie l’équation du premier ordre (z′)′ + (λ1 −λ2)z′ = 0.
• Cas où ∆ , 0. Dans ce cas, λ2 −λ1 , 0 et z vérifie

(z′)′ + (λ1 − λ2)z′ = 0 si et seulement si il existe
C ∈C tel que

∀t ∈R, z′(t) = Ce(λ2−λ1)t

ou encore (en primitivant) si et seulement si il
existe A ∈C telle que

∀t ∈R, z(t) =
C

λ2 −λ1
e(λ2−λ1)t +A

En multipliant par eλ1t on en déduit que les solu-
tions de (E0) sont exactement les fonctions de la
forme y : t 7→ Aeλ1t +Beλ2t où les constantes A et
B = C

λ2−λ1
décrivent C lorsque A,C décrivent C.

• Cas où ∆ = 0. Dans ce cas λ2 −λ1 = 0 et l’équation
sur z s’écrit alors z′′ = 0, qui équivaut à :

∀t ∈R, z(t) = At +B

où A,B ∈ C sont des constantes quelconques. En
multipliant par eλ0t , on en déduit que les so-
lutions de (E0) sont les fonctions de la forme
y : t 7→ (At + B)eλ0t , où A,B sont des constantes
complexes quelconques.

■ Résolution de (E0) si K =R

1. Si (C ) a deux racines réelles distinctes λ1 et
λ2, alors les solutions de (E0) sont les fonc-
tions de la forme :

y(t) = Aeλ1t +Beλ2t , avec A, B ∈R.

2. Si (C ) a une racine double λ0 ∈ R , alors
les solutions de (E0) sont les fonctions de la
forme :

y(t) = (At +B)eλ0t , avec A, B ∈R.

3. Si (C ) a deux racines non-réelles conjuguées
α ± iβ, alors les solutions de (E0) sont les
fonctions de la forme :

y(t) = eαt(Acosβt+Bsinβt), avec A, B ∈R.

Théorème 2

Démonstration. Les deux premiers points se traitent
comme le cas complexe.
Traitons le cas où (C ) possède deux racines conju-
guées α ± iβ.
•Soit y une solution réelle de (E0). Il s’agit en parti-
culier d’une solution complexe de (E0) donc il existe
C,D ∈C tels que pour tout t ∈R,

y(t) = Ceαt+iβt +Deαt−iβt

= eαt
(
(C +D)cos(βt) + i(C −D)sin(βt)

)
= eαt(Acosβt +Bsinβt)

où l’on a posé : A = C +D et B = i(C −D)
Reste à montrer que A et B sont réels.
C’est le cas parce que y est à valeurs réelles et que :

• A = y(0) ∈R.

• B = y( π
2β )e−α

π
2β ∈R.

•Réciproquement soient A,B ∈R.
Montrons que y : t 7→ eαt(Acosβt +Bsinβt) est bien
solution de (E0).
Par les formules d’Euler :

∀t ∈R, cosβt =
eiβt + e−iβt

2
et sin t =

eiβt + e−iβt

2i
En remplaçant cosβt et sinβt par ces expressions on
obtient

∀t ∈R, y(t) = Ceαt+iβt +Deαt−iβt

pour certaines constantes C,D ∈C.
Le théorème 1 assure alors que y est bien une solu-
tion (complexe) de (E0).


