Applications aux sommes doubles Familles sommables
1 Théoreme de Fubini et produits de sommes

Théoreme 1 : Fubini

Soit (u;;) i, jjerxy une famille sommable de complexes.

Les familles ( E uij) et ( E uij) sont sommables et :
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Exercice 1 — Démontrer le théoreme de Fubini a 'aide du théoréme de sommation par paquets
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Exemple 1 €l — Soi * tel < 1. Etablir : — = .
emple Soit z € C* tel que |z| tablir ;1 — ;1 —

Théoréme 2 : Familles « produits »

Soit (u;)ier, (vj)jey des familles sommables de complexes.

La famille (u,-v]-)(i felx] est elle aussi sommable et :
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Exercice 2 — Démontrer ce théoréme a 'aide du théoréme de Fubini.

* Remarque. Le résultat se généralise par récurrence au produit d’'un nombre fini de familles sommables.

Exemple 2 — On note [ ’ensemble des entiers naturels non nuls n’ayant aucun diviseur premier autre
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Justifier I'existence et calculer : Zan.
nel

que 2,3 ou 5. Pour tout n €1, on pose: a4, =

2 Produit de Cauchy

Soit Zan et an deux séries de nombres complexes absolument convergentes.

Pour tout n € N, on pose :

La série E ¢, est absolument convergente et :
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* Vocabulaire. La série ch est appelée produit de Cauchy des séries Zan et an.

Exercice 3 — Démontrer le théoréme.
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Exemple 3 — Soit z € C tel que |z| < 1. Montrer que : E nz"1 = 1-27
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Exemple 4 — Soient a,b € C. Montrer que E — = E — —
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“* Attention 4" Si Zaﬂ et an ne sont pas absolument convergentes, alors la série ch peut diverger.
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Exemple 5 — On pose a, = b, = \(/—_)1 pour tout n € IN. Etudier la convergence de Zan an et ch
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