
SERIES Savoir-Faire

• Option 1 On fait apparaître un télescopage.
• Option 2 On fait apparaître une somme géométrique ou une série exponentielle.
• Option 3 On fait apparaître une intégrale.

SF 1 Montrer que
∑
un converge ET déterminer sa somme

1. On vérifie que limun = 0 (sinon il y a divergence grossière).
2. Si un est de signe constant :

• On peut utiliser les critères de comparaisons pour comparer un au terme général
d’une série de référence.

• On peut utiliser une comparaison série-intégrale.
3. Si un n’est pas de signe constant :

• on peut reconnaître une série alternée.
• on peut se ramener au cas positif en étudiant la convergence absolue.

4. En cas de non convergence absolue ou si un est « compliqué » : on utilise les DL.

SF 2 Lignes directrices pour étudier la nature de
∑
un

La convergence de
∑

(−1)nan est assurée si : • an −→n→+∞
0 • (an) est décroissante.

Dans ce cas, le théorème des séries alternées fournit aussi une estimation de

Rn =
+∞∑

k=n+1

(−1)kak pour tout n ∈N : • |Rn| ≤ an+1 • Rn est du signe de (−1)n+1.

SF 3 Etudier la nature d’une série alternée
∑

(−1)nan

On compare un au terme général d’une série de référence :
• Pour une série à termes positifs : en cherchant un équivalent de un.
• Pour une série à termes positifs : en majorant ou en minorant un.
• Pour une série quelconque : En cherchant α > 1 tel que nαun −→n→∞ 0.

SF 4 Etudier la nature de
∑
un à l’aide des critères de comparaisons

• On revient à l’exponentielle : un = evn .
• Si limvn , −∞ : il y a divergence grossière.
• Si limvn = −∞, on peut essayer de montrer que n2un→ 0 :

• On revient à l’exponentielle : n2un = e2lnn+vn = ewn .
• Montrer que n2un→ 0 revient à montrer que wn→−∞.

SF 5 Nature de
∑
un lorsque un a un exposant qui dépend de n

On découpe un en morceaux plus simples à étudier, :
• Typiquement des termes du types (−1)n

nβ
avec β > 0 (séries alternées).

• On choisit l’ordre de façon à obtenir un O
(

1
nα

)
avec α > 1 (en général a)

a. Précisément, l’ordre dépend de ce que le dernier terme est de signe constant ou alterné :

• Si : un =
n→+∞

· · ·+ (−1)n

nα︸︷︷︸
vn

+O
(

1
nβ

)
︸ ︷︷ ︸

wn

où α > 0 et β > 1 alors

∑vn converge (th. des séries alternées)∑
wn converge (domination)

• Si : un =
n→+∞

· · ·+ 1
nα +O

(
1
nβ

)
︸        ︷︷        ︸

vn

où 0 < α < β alors vn ∼ 1
nα et

∑
vn est de même nature que

∑ 1
nα

SF 6 Utiliser les DL pour prouver la convergence de
∑
un

La technique s’applique pour étudier la série
∑
f (k) où f ∈ C (R+,R+) décroît :

1. Pour tout k ∈N, on peut écrire : ∀t ∈ [k ,k + 1], f (k + 1) ≤ f (t) ≤ f (k).

2. Par croissance de l’intégrale pour tout k ∈N : f (k + 1) ≤
(2)

∫ k+1

k
f (t)dt ≤

(1)
f (k)

3. La sommation de ces inégalités permet ainsi de majorer ou minorer
n∑

k=0

f (k).

SF 7 Effectuer une comparaison série-intégrale

1. On somme (2) pour k ∈ ⟦0 ,n−1⟧ puis on ajoute f (0) :
n∑

k=0

f (k) ≤ f (0) +
∫ n

0
f (t) dt

2. On calcule
∫ n

0
f (t) dt et on la majore par une constante

3. La série à termes positifs est majorée donc convergente.

SF 8 Montrer que
∑
f (k) converge par comparaison série-intégrale

1. On somme (1) pour k ∈ ⟦0 ,n⟧ :
n∑

k=0

f (k) ≥
∫ n+1

0
f (t) dt

2. On calcule In =
∫ n

0
f (t) dt et on montre que In −→n→+∞

+∞

3. La suite (Sn) des sommes partielles diverge par le théorème de minoration (relatif
aux suites)

SF 9 Montrer que
∑
f (k) diverge par comparaison série-intégrale

1. On fixe N ≥ n+ 1 et on somme (2) pour k ∈ ⟦n,N − 1⟧ et (1) pour k ∈ ⟦n+ 1 ,N⟧
2. On effectue un passage aux limites dans l’encadrement lorsque N → +∞.

SF 10 Pour obtenir un encadrement de Rn =
+∞∑

k=n+1
f (k)


