
ESPACES PREHILBERTIENS Savoir-Faire

• Symétrie : on vérifie que : (x | y) = (y | x) pour tous x,y ∈ E.

• Linéarité par rapport à la première variable :
« On fixe y ∈ E. Soient x,x′ ∈ E et λ,µ ∈R, (λx+µx′ | y) = ... = λ (x | y) +µ (x′ | y) »
Par symétrie, (· | ·) est aussi linéaire par rapport à la seconde variable.

• Positivité. Pour tout x ∈ E, on montre que : (x | x) ≥ 0.

• Séparation. C’est en général le point délicat qui nécessite un argument théorique.
On suppose que : (x | x) = 0. On montre que cela impose : x = 0E .

SF 1 Vérifier qu’une application est un produit scalaire

Si : x =
n∑
i=1

αiui et y =
n∑
i=1

βiui sont combinaisons linéaires de certains vec-

teurs u1, . . . ,un ∈ E : • (x | y) =
n∑
i=1

n∑
j=1

αiβj
(
ui | uj

)
• ∥x ∥2 =

n∑
i=1

n∑
j=1

αiαj

(
ui | uj

)
SF 2 Exploiter la bilinéarité pour calculer des produits scalaires

• Identités remarquables.
• ∥x ± y ∥2 = ∥x ∥2 + ∥y ∥2 ± 2(x | y) • ∥x ∥2 − ∥y ∥2 = (x+ y | x − y)

• Formule de polarisation : (x | y) =
1
2

(
∥x+ y ∥2 − ∥x ∥2 − ∥y ∥2

)
SF 3 Utiliser les identités remarquables

• Pour majorer un produit scalaire (abstrait) :
∣∣∣(x | y)

∣∣∣ ≤ ∥x ∥ ∥y ∥
• Pour majorer/minorer une somme :

( n∑
i=1

xiyi

)2

≤
( n∑
i=1

x2
i

)( n∑
i=1

y2
i

)
• Pour majorer/minorer une intégrale :

(∫ b

a
f (t)g(t)dt

)2

≤
(∫ b

a
f (t)2 dt

)(∫ b

a
g(t)2 dt

)

SF 4 Utiliser l’inégalité de Cauchy-Schwarz pour établir des inégalités

On vérifie que • Pour i , j :
(
ui | uj

)
= 0 • Pour tout i ∈ I : ∥ui ∥2 = (ui | ui) = 1

SF 5 Montrer qu’une famille (ui)i∈I est orthonormale

Si B = (e1, . . . , en) est une base orthonormée de E et si x,y ∈ E :

• Les coordonnées de x dans B sont
(
(x | e1) , . . . , (x | en)

)
: x =

n∑
i=1

(x | ei)ei

• Produits scalaires et norme. • (x | y) =
n∑
i=1

(x | ei) (y | ei) • ∥x ∥2 =
n∑
i=1

(x | ei)2

SF 6 Calculer en base orthonormée

• On écrit F sous forme de « Vect » : F = Vect(u1, . . . ,up).

• On obtient des équations caractérisant F⊥. Pour x ∈ E : x ∈ F⊥⇔


(x | u1) = 0

...(
x | up

)
= 0• On écrit F⊥ sous forme de « Vect » en résolvant le système.

SF 7 Déterminer F⊥ lorsque F est un sous-e.v. de dimension finie

• Si E est de dimension finie. Procéder par inclusion-dimension :
• Montrer que G ⊂ F⊥. Fixer x ∈ G puis montrer que : ∀a ∈ F, (x | a) = 0
• Montrer que : dimG = dimE −dimF.

• Si E est de dimension infinie. Procéder par double-inclusion.
• L’inclusion G ⊂ F⊥ se montre de même
• Pour montrer F⊥ ⊂ G, on peut montrer que G est un supplémentaire de F.

Etant donné x ∈ F⊥, on est alors assuré que x ∈ G car :
• x = y+z pour certains y ∈ F et z ∈ G ⊂ F⊥ • y = x−z donc y ∈ F∩F⊥ = {0E}

SF 8 Montrer que G = F⊥ lorsque F est un sous-e.v. de dimension finie

• Méthode 1 : calcul « à vue »
Si on arrive à écrire : x = y + z avec y ∈ F et z ∈ F⊥. Alors : pF(x) = y.

• Méthode 2 : avec une base quelconque de F.
On dispose d’une base (e1, . . . , ep) non orthonormée de F.
On traduit les deux conditions : 1. pF(x) ∈ F 2. x − pF(x) ∈ F⊥.

1. permet d’écrire : pF(x) =
p∑

i=1
αiei avec des αi à trouver.

2. donne les équations vérifiées par les αi :
(
x − pF(x) | ej

)
= 0 pour j ∈ ⟦1 ,p⟧

• Méthode 3 : en base orthonormée

Si on dispose d’une base orthonormée (e1, . . . , ep) de F, alors : pF(x) =
p∑

i=1

(x | ei)ei

SF 9 Calculer le projeté orthogonal de x sur un sous-e.v. F

1. On trouve un vecteur normal i.e. un vecteur a non nul de H⊥

2. On applique la formule : pH (x) = x − (x | a)
∥a∥2

a.

SF 10 Calculer le projeté orthogonal de x sur un hyperplan H

1. On calcule le projeté orthogonal pF(x) de x sur F
2. On applique la formule : d(x , F) = ∥x − pF(x)∥

SF 11 Calculer la distance de x à un sous-espace vectoriel F

1. On trouve un vecteur normal i.e. un vecteur a non nul de H⊥

2. On applique la formule : d(x , H) =
|(x | a)|
∥a∥

.

SF 12 Calculer la distance de x à un hyperplan H


