
ANALYSE ASYMPTOTIQUE Savoir-Faire

• On peut combiner les équivalents usuels et les opérations sur les équivalents (à
l’exception de la somme et de la composition)

• Dans le cas d’une somme on peut supprimer les termes négligeables devant les
autres.

• On peut effectuer un DL et prendre le premier terme non nul.

SF 1 Pour trouver un équivalent

On combine termes à termes les DLn en 0 de f et de g.
SF 2 Obtenir un DLn en 0 d’une combinaison linéaire λf +µg

• On écrit les DLn en 0 de f et g (en cas de gain d’ordre i.e. si l’un des deux DL
commence par un terme en xp on peut développer l’autre à l’ordre n− p)

• On effectue le produit des DL en « aspirant » dans le o(xn) tous les xn+1, xn+2, ...

SF 3 Obtenir un DLn en 0 du produit f g

• On écrit le DLn en 0 de la fonction u : x 7→ u(x)
• On écrit le DLn en 0 de f avec la lettre u puis on remplace u par le DL de u(x).

SF 4 Obtenir un DLn en 0 de la composée x 7→ f (u(x)) avec u(x) −→
x→0

0

On essaie de se ramener à N (x)
1+u(x) = N (x)× 1

1+u(x) avec u(x) −→
x→0

0

SF 5 Pour obtenir un DLn de f
g

On utilise le théorème de primitivation en partant d’un DLn−1 de la dérivée.
C’est une méthode efficace dans le cas d’une fonction définie par une intégrale ou
d’une fonction trigonométrique réciproque.

SF 6 Pour obtenir un DLn d’une primitive

On « pose » g(h) = f (a+ h) :
• On effectue un DLn en 0 de g : h 7→ f (a+h) • On revient à x en posant « h = x−a »

SF 7 Obtenir un DLn de f en a , 0

• On justifie l’existence d’un DLn en b pour f −1 avec Taylor-Young
• On écrit le DLn de f −1 avec des coefficients indéterminés

f −1(y) =
y→b

a+ a1(y − b) + · · ·+ an(y − b)n + o((y − b)n

• On effectue le changement de variable y = f (x) :

x − a =
x→a

a1

(
f (x)− b

)
+ · · ·+ an

(
f (x)− b

)n
+ o((x − a)n)

• On remplace f (x) par son DLn en a et on identifie à x − a.

SF 8 Obtenir le DLn de la réciproque f −1 en b = f (a)

On peut utiliser les équivalents : on cherche un équivalent de N (x) et de D(x).

SF 9 Lever une forme indéterminée « quotient » f (x) =
N (x)
D(x)

On revient à la forme exponentielle : f (x) = exp
(
u(x)

)
où u(x) = b(x) ln

(
a(x)

)
.

On peut utiliser les équivalents pour chercher la limite de u(x).

SF 10 Lever une forme indéterminée « puissance » f (x) = a(x)b(x)

• On justifie que f est C 1 sur I \ {a} par opérations.
• On étudie lim

x→a
f (x) pour prolonger f par continuité en a (on cherche donc

un équivalent de f en a, éventuellement en utilisant les DL).
• On étudie lim

x→a
x,a

f ′(x) pour appliquer le théorème de la limite de la dérivée et

ainsi montrer que f est dérivable en a et que f ′ y est continue (on cherche
donc un équivalent de f ′ en a éventuellement en utilisant les DL).

SF 11 Montrer que f se prolonge en une fonction de classe C 1 sur I

• On cherche un DLn de f en a : f (x) =
x→a

a0 + a1(x − a) + an(x − a)n + o((x − a)n)

où an , 0 est le premier terme non nul de degré au moins 2 (en pratique 2 ou 3).
• Le prolongement par continuité découle de ce que f (x) =

x→a
a0 + o(1) −→

x→a
a0.

• Le taux d’accroissement s’écrit f (x)−a0
x−a =

x→a
a1 + o(1) −→

x→a
a1.

• L’équation de la tangente à Cf en a est y = Ta(x) où Ta(x) = a0 + a1(x − a).
• La position relative au voisinage de a est donnée par le signe de

f (x)− Ta(x) =
x→a

an(x − a)n + o((x − a)n) ∼
x→a

an(x − a)n

• On utilise la conservation du signe par équivalence :
au voisinage de a, f (x)− Ta(x) est du signe de an(x − a)n

SF 12 Etudier localement f au voisinage de a (prolongement, tangente ... )

On pose g(h) = hf ( 1
h ) :

• On effectue un DLn de g en 0+ avec n ≥ 2 : hf
(1
h

)
= g(h) =

h→0+
a0+a1h+anhn+o(hn)

• On « revient » à x en posant « h =
1
x

» : f (x) =
x→+∞

a0x+ a1 +
an
xn−1 + o

( 1
xn−1

)
• L’équation de l’asymptote à Cf en +∞ est y = a0x+ a1.
• Si an , 0, la position relative au voisinage de +∞ est donnée par le signe de an :

f (x)− (a0x+ a1) =
x→+∞

an
xn−1 + o

( 1
xn−1

)
∼

x→+∞
an
xn−1

SF 13 Utiliser un DL pour étudier une asymptote en +∞


