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Exercice 3 — 1. La symétrie, la bilinéarité et la positivité ne posent aucun problème, je ne détaille que la séparation.

Soit P ∈Rn[X]. Supposons que : 0 = (P | P ) =
∫ 1

−1
P (x)2 dx et montrons que P est le polynôme nul.

Sur l’intervalle [−1 ,1], la fonction h : x 7→ P (x)2 est : i) Continue ; ii) Positive ; iii) D’intégrale nulle.
Par théorème h = 0 sur [−1 ,1] i.e. : ∀x ∈ [−1 ,1], P (x) = 0
Par conséquent P a une infinité de racines donc, par théorème, P est le polynôme nul.

2. Considérons la famille (P0, . . . , Pn) de Rn[X] obtenue en appliquant l’algorithme de Graam-Schmidt à la base
canonique (1,X, . . . ,Xn). Par théorème (P0, . . . , Pn) est une base orthonormée de Rn[X] et :

∀k ∈ ⟦0 ,n⟧,Vect(P0, . . . , Pk) = Vect(1,X, . . . ,Xk)

Soit k ∈ ⟦0 ,n⟧. On sait que Pk ∈ Vect(1, . . . ,Xk) donc degPk ≤ k.
De plus la liberté de (P0, . . . , Pk) assure que Pk < Vect(P0, . . . , Pk−1) = Vect(1, . . . ,Xk−1) (cette condition se
réduisant à Pk , 0 si k = 0).
On en déduit que degPk = k.

3. Soit Q ∈Rn−1[X].
Par théorème Q ∈ Vect(P0, . . . , Pn−1). Puisque Pn est orthogonal à chaque Pi pour i ≤ n− 1 on en déduit que
(Pn |Q) = 0.

4. On sait déjà que Pn possède au plus n racines dans [−1 ,1].
Soient −1 < x1 < · · · < xp < 1 les racines de Pn dans ]−1 ,1[ en lesquels Pn change de signe 1 (en particulier
p ≤ n). Par construction, la fonction t 7→ Pn(t)Q(t) est de signe constant (Q change de signe exactement en les
mêmes points que Sn). Puisque cette fonction est continue et non nulle (c’est un polynôme de degré n+p ≥ 0),

on en déduit que
∫ 1

−1
Pn(t)Q(t)dt , 0. Ainsi (Pn |Q) , 0 donc par la question précédente, p = degQ > n− 1.

Ainsi p = n ce qui assure que Pn a exactement n racines (et qu’elles sont toutes simples et dans ]−1 ,1[).

5. Notons Ψ la forme linéaire de Rn−1[X] suivante Ψ : B 7→
∫ 1

−1
B(x)dx

Par ailleurs, pour i ∈ ⟦1 ,n⟧ note ϕi la forme linéaire de Rn−1[X], B 7→ B(xi).
Il s’agit de montrer que Ψ ∈ Vect(ϕ1, . . . ,ϕn).
Montrons que (ϕ1, . . . ,ϕn) est génératrice de L (Rn−1[X] ,R), ce qui suffira.
Vu que cette famille est de cardinal n = dim

(
L (Rn−1[X] ,R)

)
, il suffit de prouver qu’elle est libre.

Soient α1, . . ., αn tels que
n∑

k=1

αkϕk = 0 i.e., pour tout P ∈Rn−1[X] :
n∑

k=1

αkϕk(P ) = 0 ou encore :
n∑

k=1

αkP (xk) =

0 Notons L1, . . . ,Ln les polynômes de Lagrange associés à x1, . . . ,xn.
Fixons i ∈ ⟦1 ,n⟧, on sait que degLi = n− 1 donc Li ∈Rn−1[X] et : Li(xi) = 1 et Li(xk) = 0 pour k , i

En évaluant P = Li la relation ci-dessus :
n∑

k=1

αkLi(xk) = 0 et il reste : αi = 0, ceci pour tout i ∈ ⟦1 ,n⟧.

6. Soit A ∈R2n−1[X]. Ecrivons la division euclidienne de A par Pn : A = PnQ+R où R ∈Rn−1[X].

Par linéarité de l’intégrale
∫ 1

−1
A(x)dx =

∫ 1

−1
Pn(x)Q(x)dx+

∫ 1

−1
R(x)dx.

Or : degQ ≤ n−1 car degPn = n et PnQ = A−R ∈R2n−1[X]. Par la question 3 :
∫ 1

−1
Pn(x)Q(x)dx = (Pn |Q) = 0.

Ainsi avec la question qui précède, puisque degR ≤ n− 1 :
∫ 1

−1
A(x)dx = 0 +

∫ 1

−1
R(x)dx =

n∑
i=1

δiR(xi).

Enfin, puisque les xi sont racines de Pn, pour tout i ∈ ⟦1 ,n⟧ : R(xi) = A(xi)− Pn(xi)Q(xi) = A(xi)− 0 = A(xi).
7. Soit k ∈ ⟦1 ,n⟧. On sait que degLk = n− 1 donc L2

k ∈R2n−1[X].

Avec le résultat qui précède :
∫ 1

−1
L2
k(t)dt =

n∑
i=1

δiLk(xi)
2 = δk (car Li(xk) = 0 pour i , k et Lk(xk) = 1)

Ainsi par positivité de l’intégrale, puisque L2
k ≥ 0 : δk =

∫ 1

−1
L2
k ≥ 0.

1. i.e. les racines de multiplicité impaire


