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Fonctions de deux variables Indications

1 1. Procéder par opérations pour le caractère C 1 (avec une

composition pour (x,y) :7→
√
x2 + y2).

Réponse :
∂f

∂x
(x,y) =

y3

(x2 + y2)
3
2
et
∂f

∂y
(x,y) =

x3

(x2 + y2)
3
2

2. • Existence des dérivées partielles.
Etudier les limites en 0 des taux d’accroissements

f (t,0)− f (0,0)
t

et
f (0, t)− f (0,0)

t

• f n’est pas de classe C 1.

Montrer que
∂f

∂x
n’est pas continue en (0,0) par

exemple en montrant que t 7→
∂f

∂x
(t, t) n’est pas conti-

nue en 0.

2 1. Réponse :
∂f

∂x
(x,y) =

−2xy4 + y5

(x2 + y2 − xy)2

et :
∂f

∂y
(x,y) =

2y5 − 3xy4 + 4x2y3

(x2 + y2 − xy)2

2. Etudier les limites en 0 des taux d’accroissements
f (t,0)− f (0,0)

t
et

f (0, t)− f (0,0)
t

3. Il s’agit de montrer la continuité en (0,0) de
∂f

∂x
et
∂f

∂y
.

Par exemple, pour
∂f

∂x
, étant donné (x,y) ∈R2 \ {(0,0)},

en posant r =
√
x2 + y2, chercher une majoration de la

forme :
∣∣∣∣∣∂f∂x (x,y)−

∂f

∂x
(0,0)

∣∣∣∣∣ ≤ ε(r) où ε(r) −→
r→0

0.

Pour cela :

• Se rappeler que
∣∣∣y∣∣∣ ≤ r

• Montrer que x2 + y2 − xy ≥ 1
2
r2.

3 1. Réponse :
∂f

∂x
(x,y) =

x4y + 4x2y3 − y5

(x2 + y2)2

et :
∂f

∂y
(x,y) =

x5 − 4x3y2 − xy4

(x2 + y2)2

2. Etudier les limites en 0 des taux d’accroissements
f (t,0)− f (0,0)

t
et

f (0, t)− f (0,0)
t

3. Il s’agit de montrer la continuité en (0,0) de
∂f

∂x
et
∂f

∂y
.

Par exemple, pour
∂f

∂x
, étant donné (x,y) ∈R2 \ {(0,0)},

en posant r =
√
x2 + y2, chercher une majoration de la

forme :
∣∣∣∣∣∂f∂x (x,y)−

∂f

∂x
(0,0)

∣∣∣∣∣ ≤ ε(r) où ε(r) −→
r→0

0.

4 1. Exprimer g en fonction d’une primitive F de f .

Réponse à trouver :
∂g

∂x
(x,y) =

g(x,y)− f (x)
y − x

et
∂g

∂y
(x,y) =

g(x,y)− f (y)
x − y

2. Etudier les limites en 0 des taux d’accroissements
g(a+ t,a)− f (a,a)

t
et

g(a,a+ t)− f (a,a)
t

Par exemple, pour
∂g

∂x
(a,a), exprimer

g(a+ t,a)− f (a,a)
t

en fonction de F puis faire un développement limité à
l’ordre 2 au numérateur de F en a à l’aide de la formule
de Taylor-Young.

Réponse à trouver :
∂g

∂x
(a,a) =

∂g

∂y
(a,a) =

1
2
f ′(a)

3. En utilisant les expressions trouvées aux questions 1 et
2 et en exprimant g à l’aide de F on obtient :
∂g

∂x
(x,y)−

∂g

∂x
(a,a) =

F(y)−F(x)−F′(x)(y − x)
(y − x)2 − 1

2
f ′(a)

On peut écrire F(y) − F(x) − F′(x)(y − x) sous la forme
d’une intégrale en appliquant la formule de Taylor à
reste intégral à l’ordre 1 entre les points x et y.

4. Il reste à montrer que chaque fonction
∂g

∂x
et
∂g

∂y
est

continue en (a,a) pour tout a ∈R.
Revenir pour cela à la définition de la continuité.

Par exemple pour
∂g

∂x
, étant fixé ε > 0, il s’agit de prouver

qu’il existe α > 0 tel que

∀u = (x,y) ∈ B
(
(a,a),α

)
,

∣∣∣∣∣∂g∂x (x,y)−
∂g

∂x
(a,a)

∣∣∣∣∣ ≤ ε
Utiliser l’expression de la question précédente en tradui-
sant la continuité de f ′ en a i.e. la fait que f ′(t) −→

t→a
f ′(a).

5 Exprimer ϕ à l’aide d’une primitive F de f .

6 1. Réponse : z = 2x

2. Il s’agit à k fixé de résoudre l’équation f (x,y) = k d’in-
connue (x,y) ∈R2 puis de reconnaître géométriquement
l’ensemble des solutions.
Réponse :

• Si k ≥ −1 + e−1 :
c’est le cercle de centre (−1,0) et de rayon

√
ln(1 + k) + 1.

• Si k < −1 + e−1 : c’est l’ensemble vide.

7 Utiliser la règle de la chaîne.

8 Utiliser la règle de la chaîne.
1. Réponse :

ψ′(x) =
∂f

∂x

(
x,f (x,x)

)
+
(∂f
∂x

(x,x)+
∂f

∂y
(x,x)

)∂f
∂y

(
x,f (x,x)

)
2. a)

b) Réponse :

•
∂G

∂x
(x,y) =

∂f

∂x

(
x,f (x,y)

)
+
∂f

∂x
(x,y)

∂f

∂y

(
x,f (x,x)

)
•
∂G

∂y
(x,y) =

∂f

∂y
(x,y)

∂f

∂y

(
x,f (x,x)

)



9 a) Un seul point critique : (0,3)

C’est un minimum global.
b) Deux points critiques :

• (0,0) qui est un minimum global.
• (−2

3 ,0) qui n’est pas un extremum.

c) Points critiques : (nπ,0) où n décrit Z.

• Les (2kπ,0) ne sont pas des extremums
• Les (2kπ+π,0) sont des minimums

10 a) Deux points critiques :

• (0,0) qui n’est pas un extremum.
• (1,1) qui n’est pas un extremum, par exemple en re-

groupant les termes comme suit :

f (1 + h,1 + k)− f (1,1) = h3 + 3h2 + k3 + 2k2 +
(
k2 − 3hk

)
puis en mettant le dernier terme sous forme canonique.

b) Un seul point critique : (0,0). Ce n’est pas un extremum,

par exemple en considérant f (x,0) et f
(3

2
y2, y

)
.

c) Trois points critiques :

• (0,0) qui n’est pas un extremum.
• (1,1) qui est un minimum : par exemple en utilisant

l’inégalité 2hk ≤ h2 + k2.
• (−1,−1) qui est un minimum.

11 1. En posant γ(t) = (1− t)p + tq pour tout t ∈R, on obtient

ϕ = f ◦γ et on peut dériver cette expression à l’aide de
la règle de la chaîne (utiliser la formule du III donnant
l’expression à l’aide du gradient).
Réponse à trouver : ϕ′(t) =

(
∇f

(
(1− t)p+ qt

)
| q − p

)
2. Supposer que f admet en p ∈R2 un point critique. Fixer

un point q ∈ R2 quelconque, il s’agit de montrer que :
f (q) ≥ f (p). Avec les notations de la question 1 ceci re-
vient à montrer que ϕ(1) ≥ ϕ(0).
Pour ce faire, montrer que ϕ est une fonction croissante
sur [0 ,1] en exploitant le résultat de la question 1..

12
1. Dériver la fonction ϕ à l’aide de la règle de la chaîne
2. Appliquer le théorème des bornes atteintes à g : θ 7→
f (cosθ,sinθ) sur [0 ,2π].

3. Avec la question 2., il suffit de montrer que pour tout
(x,y) ∈ F : f (x,y) ≥ min

(a,b)∈S
f (a,b).

Etant donné (x,y) ∈ F, poser :

a =
x√

x2 + y2
et b =

y√
x2 + y2

de sorte que (a,b) ∈ S et utiliser le résultat de 1.

13 1. Poser A = {f (x,y) ; (x,y) ∈ K} : c’est une partie de R.

Il s’agit de montrer que la partie A possède une borne
supérieure.

2. Procéder par l’absurde : si M = f (x,y) pour un certain
(x,y) ∈ ]0 ,1[2, alors (x,y) serait un point critique de f .

3. D’après la question qui précède, le maximum est atteint
sur la frontière de K i.e. en un point de la forme (x,0) ou
(x,1) ou (0, y) ou (1, y). Etudier la fonction f sur chacun
des quatre « morceaux »

L1 = {(x,0) ; x ∈ [0 ,1]} , L2 = {(x,1) ; x ∈ [0 ,1]}
L3 = {(0, y) ; y ∈ [0 ,1]} et L4 = {(1, y) ; y ∈ [0 ,1]}

on est ramené à l’étude d’une fonction d’une seule va-
riable dans chaque cas.

4. On peut utiliser la caractérisation séquentielle de la
borne supérieure : il existe une suite (zn) ∈ AN telle que
zn −→n→+∞

M. La suite (zn) est donc de la forme
(
f (xn, yn)

)
pour certaines suites (xn) et (yn) à termes dans [0 ,1].
En appliquant (deux fois) le théorème de Bolzano-
Weierstrass, on peut extraire des sous-suites (xϕ◦ψ(n))
et (yϕ◦ψ(n)) qui convergent respectivement vers x et y
dans [0 ,1]. Faire tendre n vers l’infini dans l’égalité

zϕ◦ψ(n) = 2x3
ϕ◦ψ(n) + 6xϕ◦ψ(n)yϕ◦ψ(n) − 3y2

ϕ◦ψ(n) + 2

pour montrer que M = f (x,y).

14 1. • Pour montrer que
∂f

∂x
est (α−1)-homogène : fixer t > 0

et y ∈R puis dériver par rapport à x l’égalité :

∀x ∈R, f (tx, ty) = tαf (x,y)

• Procéder de même pour
∂f

∂y
• Pour obtenir l’identité d’Euler, fixer x,y ∈R puis déri-

ver par rapport à t (règle de la chaîne) l’égalité :

∀t > 0, f (tx, ty) = tαf (x,y)

2. Fixer (x,y) ∈R2 puis dériver la fonction F : t 7→ f (tx, ty).
En utilisant la relation (⋆) on montre que F est solu-

tion de l’équation différentielle y′ − α
t
y = 0. Il suffit de

résoudre l’équation (utiliser la valeur de F(1) pour déter-
miner la constante).

15 1. Procéder par analyse-synthèse. Dans l’analyse, étant

fixé y ∈R, primitiver par rapport à x l’égalité :

∀x ∈R,
∂f

∂x
(x,y) = −

y

x2 + y2

On obtient une expression de f (x,y) en fonction d’une
constante C(y) qui dépend a priori de y. En dérivant
l’expression de f (x,y) on constate que C est constante.
Ne pas oublier la phase de synthèse.
Solutions : toutes les fonctions de la forme

(x,y) 7→ −Arctan
x

y
+C

2. Procéder par l’absurde et dériver F : t 7→ f (cos t,sin t)
avec la règle de la chaîne. On obtient : F′(t) = 1 pour
tout t ∈ R. Obtenir une contradiction en exploitant la
2π-périodicité de F.

2



16 Procéder par analyse-synthèse. Dans l’analyse, fixer v et
dériver la fonction u 7→ F(u,v) = f (u,v − 2u).

On obtient :
∂F

∂u
(u,v) = v −u.

Primitiver par rapport à u : F(u,v) = uv − u
2

2
+C(v)

où la « constante de primitivation C » dépend de v.
Déterminer C(v) en prenant u = 0.
On « revient » à f (x,y) en prenant u = x et v = y + 2x.
Ne pas oublier la synthèse.

17 1. Procéder par analyse-synthèse.

Dans l’analyse, fixer x,y ∈R et montrer que la fonction
ϕ : t 7→ f (tx, ty) est constante (la valeur de la constante
s’obtient en considérant ϕ(0)).
Ne pas oublier la synthèse.
On trouve que seule la fonction nulle est solution.

2. • Sur R2 \ {(0,0)}, procéder par composition.

• En (0,0). Calculer d’abord
∂h

∂x
(0,0) et

∂h

∂y
(0,0)

(taux d’accroissements) puis majorer les quantités∣∣∣∣∣∂h∂x (x,y)− ∂h
∂x

(0,0)
∣∣∣∣∣ et

∣∣∣∣∣∂h∂y (x,y)− ∂h
∂y

(0,0)
∣∣∣∣∣ en fonction

de r =
√
x2 + y2.

3. Il s’agit d’une équation linéaire et l’équation homogène
a été résolue à la question 1..
Utiliser la question 2. pour trouver une solution particu-
lière (proportionnelle à h).

18 1. Dériver ϕ à l’aide de la règle de la chaîne.

On constate que ϕ est constante pourvu que Y ′−2tY = 0.
2. Procéder par analyse-synthèse. Dans l’analyse la ques-

tion 1 assure que f (t,Cet
2
) = u0(t) pour tous t,C ∈R.

On en déduit une expression de f (x,y) pour tout (x,y).
Ne pas oublier la phase de synthèse.
Solution : (x,y) 7→ u0(ye−x

2
)

3


