Familles sommables

Indications

) lul=) 1"
nezZ nez
Sommer par paquets avec la partition Z =Z~ UIN* puis

poser m = —n dans la premiere somme ce qui fait appa-
raitre deux sommes géométriques de raison r.

* Sommabilité. Dans [0,+o0] :

* Somme. Procéder exactement de la méme facon : on ob-
tient deux sommes géométriques, I'une de raison re'¢ et
l'autre de raison re'®.

Réponse apres réduction au méme dénominateur :

1—r2
Zun T 1-2rcosO 112
neZ
. Zak = Zbk oul < by <---<b, sont les valeurs de

k=1
{a,...,a } tr1es par ordre croissant. Vérifier alors que

by > k pour tout k € [1,n].
2. En utilisant le recouvrement disjoint

(neN | n22}:UIH

n=0
+ 2n+1
Z a(n) Zoo . o(k)
= S ou : Sy = T
n?lnn " " k2Ink
n>2 n=0 k=2"+1

En majorant le dénominateur puis en utilisant la ques-
tion 1., on montre que :
1 2127 +1)
X
22n+21n(2n+1) 2
qui est le terme général d’une série divergente.

Sy =

3 | En utilisant le recouvrement disjoint IN* = U I,, on peut

Y

nelN*

écrire dans [0, +o0]

=anousn—zf(lk.

n=1
f(

Il s’agit de montrer que E s, converge ssi E
converge.
Pour cela commencer par encadrer s, en montrant que :

<o, e g = 1) - [ )

= ns_
n+lo @ n

* Si ) s, converge. En sommant @ pour k € [[1,n]] puis en
séparant les sommes et en réindexant on obtient :

isk . ] [ ) . i[f‘l(k)J
k

— n+1 2 — k(k+1)
L fH (k)
La derniére somme est minorable par Z[ [ J Ce qui
k=1
f(n)
permet de majorer les sommes partielles de Z%
: 5 )
qui est de méme nature que Z 2
-1
. Sz’Z ! nin) converge En sommant de méme @ :
n ) | k)
-1
ZSk < T—lf (1)J+ Zm <u, +5n
k:1 ——— k:2

————
Sn

Up

4

5

Les sommes partielles de Z 5—= sont par hypothese
n

majorées ce qui permet de :
EGIRREaG]
k(k—1) k?

* Majorer (u,) en notant que

[/

* Majorer (S,,),enN car

s L)

- 2
dn k=n+1 k
+00 +00
On obtient ZZF = 2e par un calcul dans [0, +o0] en
n=0k=n :

* Echangeant les sommes triangulaires avec par sommation
par paquets avec
k
e Calculant la somme Z

n=0

T qui apparait comme
\;_/
indép. de n

somme intérieure

¢ Calculant les deux séries exponentielles qui en résultent.

+00 +00
On obtient ZZ ! Zk“ ! par un calcul dans [0, +co]
n=1k=n k=

en :
* Echangeant les sommes triangulaires avec par sommation

par paquets avec
k-1
e Calculant la somme Z

n=0

ka
~——
indép. de n

qui apparait comme

somme intérieure

On obtient Zuk = Zaﬂ par un calcul dans [0, +co] en

n= 1

* Remplacant uy par kZ n(n+ 1)

* Echangeant les sommes triangulaires avec

* Calculant la somme Zk qui apparailt comme somme
k=1
intérieure
Le résultat obtenu justifie la convergence.

+00
En observant que a, = ZA”' exprimer formellement
p=n

+00
a . . . .-
Z—” comme une somme triangulaire puis utiliser
n
n=1
Le calcul formel est justifié a posteriori en montrant que la
famille (—p) . est sommable.
n,peN
n<p

8

A +
Pour cela, montrer (de méme) que Z u =
n
n,peIN* p
n<p

et justifier que le résultat est fini par critére d’équivalence.

[, | Hy

Il
—



+00 2
g | Utiliser w, < (Zap) pour majorer (dans [0,+o0])
p=n

+00
Wy . .

E — par une somme triangulaire. Montrer alors que
n

=1

la somme obtenue est finie en calculant un équivalent de

i 1

n=1 \/_
g | a) Commencer par sommer a p + g constant dans [0, +co] :

1
Z (p+q)°

p,geN”

par comparaison série-intégrale.

+0o0

-1

n

- Zn_a
n=2

Puis utiliser le critere d’équivalence pour les séries a

termes positifs.

Réponse : La famille est sommable ssi a > 2

1
b) Utiliser : E(p +9)? < p*+4q° < (p+q)? pour encadrer la
somme dans [0, +oo] par une somme similaire a celle de

la question a). Réponse : La famille est sommable ssi o > 1

En sommant a p + g constant dans [0, +o0] ( ) puis en
séparant la somme intérieure on fait apparaitre la somme
des k et la somme des k? qui, une fois calculées donnent

) Z” =
a-1
pe ~ 6 n
Utiliser le critére d’équivalence pour les séries a termes

positifs.
Réponse : La famille est sommable ssi o > 4

P"'q

d)

Commencer par montrer que
pi+qt <2(p+q)° (p+q)" <2%(p" +4q%)
(pour la seconde distinguer les casou p > g et p <q)

Ceci permet d’encadrer la somme dans [0,+oco] par la
somme de la question a).

et

10, Commencer par un calcul formel en sommant a p + ¢
aP bl

constant :
+00 n
1 n—
=) Gral o L 2
(p+q) =0 p=0

p,geIN
Pour calculer la somme intérieure :
n

— "l = (a— b)Zan”‘P

e Sia=b, utiliser a”

p=0
pour faire apparaitre deux séries exponentielles :
ae® —beb
Réponse: S=———
P a-=b

* Sia=0b,lasomme intérieure vaut (n+ 1)a” ce qui permet
ensuite de séparer la somme en # en deux séries exponen-

tielles
Réponse: S =(a+1)e
Justifier le calcul a posteriori en montrant que
Py
(a_‘) est sommable : il suffit pour cela de cal-
(p+9)! p,qele .
b
culer Z lal"] |' dans [0,+0c0] exactement de la méme
ok (Pt a)
facon.

* Sommabilité. Par majoration avec
(=1)P*d < 11
2P39(p+q+1)|~ 2P 34

* Somme. Sommer a « p + g constant »
+ n
(—1)P* =

el ZZW e T)

La somme en p se rameéne a une somme geometrlque de

11

. 3
raison —.
On obtient :

Tomgrarn =L ls) 2L )

=0

Remdexer les sommes via k = n+1 puis utiliser le résultat

fourni par I’énoncé avec: x=—
(—1)P+d

_ED 13- 18in2
2739(p+q+1) 1 1

Réponse :
p.geN

12! 1. Sommer a « p + g constant »

+oo . n—1

1
q;g*pq +p*q ne—k(n -

n=2 k=1

Effectuer une D.E.S. de dans la somme inté-

1
X(n-X)

rieure puis séparer et réindexer la deuxiéme somme.
2. Avec Fubini positif :

1 Tle 1
M;wpqz +p2q ;E;m
Effectuer une D.E.S. de m puis remarquer que
o1 1
A g - m H, (observer les termes communs aux

deux sommes qui se simplifient).

13| Exprimer formellement la somme comme une somme

1 +00

= qu » .
—_ q —
+00 +00

27(2k+1)
5= X =) )
n=0 k=0
Utiliser ensuite le theoreme de sommation par paquets en
découpant IN* a « a valuation 2-adique constante » i.e. avec
+00
N*= U {2"(2k+1); k e N}

n=1

double en utilisant « 1

la partition :

Ensemble des a € N* t.q. v3(a) =
+0o
S= Zz”
o =l :
Le calcul se justifie a posteriori en prouvant que la famille
(z9) .ene €5t sommable.

La somme devient :



14

15

16

a) Utiliser le théoréme sur les familles « produit »

4
i
Ré S =
éponse 1= 52
b) utiliser le théoréme de sommation par paquets avec la
partition :
+00 k
((p.q) €N x N | plq}=U{(p,—);k21}
= p
P
6
T
Ré : =—.
éponse: S, 510
c) On peut exprimer S; en fonction de S; en découpant

IN* x IN* « a PGCD constant ». Précisément, réexprimer
S1 al’aide du théoréme de sommation par paquets avec
la partition :

N'xN'=|_Ji(p,q) e N'xN' | pAg=d)
d=1
puis effectuer le changement d’indice (p,q) =
dans la somme inStérieure.

Sy = 2.
37T

(dp’,dq’)
Réponse :

1. Dans [0,+00] :
* calculer le produit C(a) x C(«) en utilisant le théoréme
sur les familles « produit »
* utiliser le théoréeme de sommation par paquets avec la

+00 n
N'xN* = ) {(d,—);dzl et dln}
n=1 d

partition :

2. Méme principe.

1. Remarquer que |A(n)| =1 pour tout n € IN puis procéder
par critere d’équivalence en utilisant la convergence de
) W

2. Pour la premiere égalité :

n Ix
* Remarquer que = Zx”k
d 4 1—x"
k=1
* utiliser le théoréeme de sommation par paquets avec la
partition :
+00 m
N* x IN* = {(d,g); d>1 et dlm}
m=1

La deuxiéme égalité repose sur le calcul explicite de o(m)
pour tout m > 1. Il s’agit plus précisément de montrer
que o(m) = 1 si m est le carré d’un entier i.e. m = n*> pour
un certain n € IN* et o(m) = 0 sinon.

Pour cela, noter que si m est décomposé en facteurs pre-
miers: m= p?l " alors les diviseurs de m sont

--Pn
les d:p1 ...p,, pour 0 <k <ay,..., 0<k, <a,. Les
x (=1)k

propriétés de A assurent que A(d) = (=1)f1 x .-

ay dn
(Y )xeeex (Y =1))
k1 =0 k=0
11 suffit alors de calculer les sommes géométriques en
notant que le résultat vaut 0 si I'un des «; est impair et

1 si tous les a; sont pairs.

ce quidonne: o(m)

17! 1. Si n est décomposé en facteurs premiers :

—_ % ay
n=py ...pr

18

19

alors les diviseurs de n sont les d = plf‘ ...plf' pour
0<ki <aj,..., 0<k <a,. Ladéfinition de A assure
que la somme se réduit aux termes de la forme A(pfi)
pour 1 <k; < a; (k; termes qui valent tous In(p;)).
Utiliser le théoréeme de sommation par paquets avec la
partition :

H\I*XN*:ygjl{(d,%);dzl et dlm}

Par comparaison série-intégrale montrer que :

1 +°°1r1n_ 1

na (a—1)2 +o()

n=1
et en déduire avec la question précédente que :
+Z’°A(n) 1
ne a1t a—1
n=1

Avec la définition de A :

w A(n) Inp Inp

YAy e,y S i

n=1 peIP peP k= 2
-

=R(a)

+0(1)

Montrer que R(a) = O(1) en le majorant indépendam-
ment de a par exemple en notant que

+00 +00

Inn
0sR@=) ) TF
n=2k=2
puis en montrant que la derniére somme obtenue est
finie.
Commencer par un calcul formel en écrivant :
+00 +00
pg=2 q=2p=2

La somme intérieure est une somme géométrique de raison
-1 . . .

— donc calculable explicitement. On obtient ensuite une
somme téléscopique (via une D.E.S.).

Z = _1

422
Le calcul est justifié a posteriori par le théoreme de Fubini a
(=P )
9" Ipg=2

Réponse :

gP 2

soit sommable : calcu-

condition que la famille (

1
ler Z pr dans [0, +o0] exactement de la méme facon que

p.9=2
dans le calcul formel.

Dans chaque cas, pour 'étude de sommabilité, calculer
Z |u1-7]-| dans [0,+o0] ou « tout est permis ». Lorsque

(ij)elx]

le résultat est fini, le calcul de Z ujj se conduit de la

(i,j)elx]

méme facon

a) On fait apparaitre une somme double avec une série géo-
métrique (en p) et une série exponentielle (en g).
Réponse :

) . zP
la famille est sommable ssi |z| <1 et Z —=
p,9eIN

e

1-z



b) Avec le théoreme de Fubini, on a affaire a une série expo-
nentielle deux fois d’affilée.

Réponse
zP o2

lql

p,qeN

c) Sommer a « p + g constant » ( Jon fait apparaitre une
somme binomiale, puis une série géométrique.

1
Réponse : la famille est sommable ssi |z| < 5 et dans ce cas
N
p,9€N p ez

d) Réponse : La famille n’est jamais sommable.

20! 1. Sous réserve de sommabilité de la famille (zp(zq_l))plqzl,

le théoreme de Fubini permet d’écrire :

+0o0 +00 +00 +00
Z LP(29-1) _ Z Z(ZZq—l)p - Zi Z(Z2p)q
pgz1 g=1 p=1 p:lzp g=1
_ _
somme géo de somme géo de
raison z29-1 raison z2P
Le résultat s'obtient en explicitant les sommes géomé-
triques.

Pour justifier la sommabilité, en procédant de méme
avec Fubini positif, on obtient :

+00 22
Y=
1=z
p.g=>1 =1
Justifier que le résultat est fml par exemple par critere
P
PO N , S z
d’équivalence a l'aide d’un équivalent de | || 2
-z

Zp+1
2. Remarquer que : = E 24(p+1)
Zp+1
Procéder alors de la méme fagon qu’a la question 1 avec

la famille (( )pzq(p“))p>o .

cisément on ne peut pas écrire :

SN RIS SR

(2
k21n22 -\ 0k Jgs1ne2
pas sommable (la sous-famille (uy ,),>1 ne l'est pas)

En revanche, la question 1. assure que I'on peut écrire :

z—zz< Bt

n=2 =2n=2

11
arce que la amzlle( ) est sommable.
prequ ool )y,

L’idée est donc d’écrire :

’

n'est

parce que la famille (Mk,n)

+00 +00 +00
c(n) C(n)-1 1
_1\n — _1\n _q\n=
YIS ()T ) (FD)
n=2 n=2 n=2
puis :
- C(n)-1
* De calculer Z(—l)” - avec le théoreme de Fu-
n=2
bini (calcul similaire a celui de la question 1.)
+00
1
*D lcul -1)"— tilisant la f le d
e calculer Z( ) - en utilisant la formule de

n=2
I’énoncé avec x = 1

. Se donner une partition multiplicative de n revient a

se donner une liste d’exposants a,,...,a, € IN tels que
2023%43  .n% =n (ou a; est le nombre de facteurs d; tel
qued; = z) En conséquence u, = |E,| ou

Ep={(ay...,a,) e N"! | 2%23%  p = n}

. Avec le résultat de 1. et le théoréme sur les familles pro-

n +oo n 1
duits, majorer — par | | > | | —.
jas 1—i™s
i=2a=0 =2

Il suffit de montrer que cette derniére quantité est ma-
jorée (elle est positive). En prenant son logarithme il

+00
suffit par exemple de montrer que Z— In(1-i7°) <+o0
i=1

21| 1. La somme est définie dans [0, +oo] et vaut : . N e PN
(utiliser le critére d’équivalence pour les séries a termes
+00 +00 +00 1 fS)
) - positi
s=) = ale) _—
n=2 23| Avec Fubini positif :
+0o0
Utiliser le théoréme de Fubini puis calculer Zl ( ! )n en 1 R 1
=Ll ( );XN (p+q2)(p+q2+1)_;;(pw?)(pwzﬂ)
remarquant que la formule donnée par I’énoncé évaluée P4 =r .
en —x donne : En effectuant une D.E.S. de , la somme
(X+g5)(X+q%+1)
Vxe[-1,1], Z—A =-1In(1-x) intérieure devient télescopique.
+00 . qeles 1
1 Pl bilit lculer S = _—
On obtient : S = Z(ln(k) CIntk—1)- z) 24| Plusieurs possibilités pour calculer M;’\V b g 1)
k=2 dans [0, +o0]
N
Revenir aux sommes partielles S = lim .. en utili- foon-l
N—too i— * Option 1. A « p+g constant » S ZZ Dk(=F)
sant Hy =InN +y +o(1). n=2k=1 (4 1)k(n =

2. Attention, utiliser le théoréme de Fubini est ici illégal. Pré-

En effectuant une D.E.S. de

L dansi int
———— dans [a somme 1n e—
X(n-X) '



25

26

27

28

29

rieure puis apres séparation et réindexation

+o0 1 n—ll
=2 - - _
S ;n(n+1);k

Il reste a échanger les sommes triangulaires ( ) pour
1
faire apparaitre des télescopages via PEFSY =1
+00 +00
* Option 2. Avec Fubini positif : § = sz
p=1g=1
1
En effectuant une D.E.S. de XX+p+0) puis aprés sim-
+oo p+1
plifications: S =
;;qp (p+1)

Il reste a échanger les sommes triangulaires ( en met-
tant de coté les termes correspondants a g = 1) pour faire
1 1 1

apparaitre des télescopages grace a =—- .
PP pages plp+1) p p+l

1

XX+ 1).. en éléments

Par décomposition F(X) = X +n)
simples.

Réponse a trouver :
p k' (n— k 'X+k

Le résultat s’obtient formellement en

1
z(z+1)...(z+n)

les sommes triangulaires ( ).
Justifier le calcul a posteriori en montrant que la famille

( -)F 1

R(n- k) .y )k nelN est sommable : on obtient de méme
Z k' (n— k |Z+ k|

Zk'|
k<n

tat est fini par exemple par critere d’équivalence.

replacant

a l'aide de la DES puis en intervertissant

]ustiﬁer que le résul-

1 3"
an est le produit de Cauchy de Zﬁ et de ZF

Utiliser la factorisation de a"*! — p"+!

un produit de Cauchy.

pour faire apparaitre

Procéder par récurrence sur p. Pour ’'hérédité écrire :
1 1 1
= X
(1-2)P*2 (1 —z)P*l
puis utiliser le théoréme relatif a la convergence absolue du

produit de Cauchy de Z(”;p)z” et Zz”

N.B. Si on suppose an absolument convergente, alors il
s’agit d’une conséquence du théoréme sur le produit de Cauchy.
L'objet de I'exercice est de montrer de montrer que la convergence

1-z

de la série ch reste valable sans I’hypothése de convergence

absolue sur an : Clest le théoréme de MERTENS

Revenir aux sommes partielles. Poser pour tout N € IN :
N

N N
AN:Zarl BN:an et Cy :ch
n=0 n=0

n=0

Il suffit de montrer que Cy —AyBy — 0.

N —+00
Commencer par montrer que pour tout N € [N :
N
Cn—-AnBy = Zak(BN—k - Byn)
k=0

Revenir a la définition de la limite. Etant donné ¢ > 0, les hy-
potheses assurent 'existence de n tel que pour tout n > ng :

+00 +00
Z bl <e et Z lag| < ¢
k=n+1 k=n+1
N
Ensuite: |Cy—AnBy| < Zlak”BN—k_BN|-
k=0

Pour N > 2ny, couper la somme en deux en l'indice k = ny :
o
* Dans Z|ak| |Bn_k — By, on peut majorer :
k=0
* les |By_x — By| par 2¢

. Z|ak| par une constante M.

k=0
N
* Dans Z lag||Bn_x — Bn|, on peut majorer :
k=np+1

* les |By_x — By| par une constante M’

N
* puis Z lak| par &.

k:ﬂ()+1



