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Familles sommables Indications

1 • Sommabilité. Dans [0 ,+∞] :
∑
n∈Z
|un| =

∑
n∈Z

rn.

Sommer par paquets avec la partition Z =Z− ∪N∗ puis
poser m = −n dans la première somme ce qui fait appa-
raître deux sommes géométriques de raison r.

• Somme. Procéder exactement de la même façon : on ob-
tient deux sommes géométriques, l’une de raison re−iθ et
l’autre de raison reiθ .
Réponse après réduction au même dénominateur :∑

n∈Z
un =

1− r2

1− 2r cosθ + r2

2 1.
n∑

k=1

ak =
n∑

k=1

bk où 1 ≤ b1 < · · · < bn sont les valeurs de

{a1, . . . , an} triés par ordre croissant. Vérifier alors que
bk ≥ k pour tout k ∈ ⟦1 ,n⟧.

2. En utilisant le recouvrement disjoint

{n ∈N | n ≥ 2} =
+∞⋃
n=0

In

∑
n≥2

σ (n)
n2 lnn

=
+∞∑
n=0

sn où : sn =
2n+1∑

k=2n+1

σ (k)
k2 lnk

.

En majorant le dénominateur puis en utilisant la ques-
tion 1., on montre que :

sn ≥
1

22n+2 ln(2n+1)
× 2n(2n + 1)

2
qui est le terme général d’une série divergente.

3 En utilisant le recouvrement disjoint N∗ =
+∞⋃
n=1

In on peut

écrire dans [0 ,+∞] :
∑
n∈N∗

1
f (n)

=
+∞∑
n=1

sn où sn =
∑
k∈In

1
f (k)

.

Il s’agit de montrer que
∑

sn converge ssi
∑ f −1(n)

n2
converge.
Pour cela commencer par encadrer sn en montrant que :

|In|
n+ 1

≤
➀
sn ≤

➁

|In|
n

et |In| =
⌊
f −1(n+ 1)

⌋
−
⌊
f −1(n)

⌋
• Si

∑
sn converge. En sommant ➀ pour k ∈ ⟦1 ,n⟧ puis en

séparant les sommes et en réindexant on obtient :
n∑

k=1

sk ≥

⌊
f −1(n+ 1)

⌋
n+ 1

−

⌊
f −1(1)

⌋
2

+
n∑

k=2

⌊
f −1(k)

⌋
k(k + 1)

La dernière somme est minorable par
n∑

k=1

⌊
f −1(k)

⌋
k2 Ce qui

permet de majorer les sommes partielles de
∑ ⌊

f −1(n)
⌋

n(n+ 1)

qui est de même nature que
∑ f −1(n)

n2

• Si
∑ f −1(n)

n2 converge En sommant de même ➁ :

n∑
k=1

sk ≤

⌊
f −1(n+ 1)

⌋
n︸         ︷︷         ︸
un

−
⌊
f −1(1)

⌋
+

n∑
k=2

⌊
f −1(k)

⌋
k(k − 1)︸        ︷︷        ︸
Sn

≤ un + Sn

Les sommes partielles de
∑ ⌊

f −1(n)
⌋

n2 sont par hypothèse

majorées ce qui permet de :

• Majorer (Sn)n∈N car

⌊
f −1(k)

⌋
k(k − 1)

∼

⌊
f −1(k)

⌋
k2

• Majorer (un) en notant que⌊
f −1(n+ 1)

⌋
4n

≤
2n∑

k=n+1

⌊
f −1(k)

⌋
k2

4 On obtient
+∞∑
n=0

+∞∑
k=n

1
k!

= 2e par un calcul dans [0 ,+∞] en :

• Echangeant les sommes triangulaires avec par sommation
par paquets avec SF 6

• Calculant la somme
k∑

n=0

1
k!︸︷︷︸

indép. de n

qui apparaît comme

somme intérieure

• Calculant les deux séries exponentielles qui en résultent.

5 On obtient
+∞∑
n=1

+∞∑
k=n

1
kα

=
+∞∑
k=1

kα−1 par un calcul dans [0 ,+∞]

en :

• Echangeant les sommes triangulaires avec par sommation
par paquets avec SF 6

• Calculant la somme
k−1∑
n=0

1
kα︸︷︷︸

indép. de n

qui apparaît comme

somme intérieure

6 On obtient
+∞∑
k=1

uk =
1
2

+∞∑
n=1

αn par un calcul dans [0 ,+∞] en :

• Remplaçant uk par k
+∞∑
n=k

αn

n(n+ 1)

• Echangeant les sommes triangulaires avec SF 6

• Calculant la somme
n∑

k=1

k qui apparaît comme somme

intérieure

Le résultat obtenu justifie la convergence.

7 En observant que an =
+∞∑
p=n

∆n, exprimer formellement

+∞∑
n=1

an
n

comme une somme triangulaire puis utiliser SF 6

Le calcul formel est justifié a posteriori en montrant que la

famille
(∆p

n

)
n,p∈N∗
n≤p

est sommable.

Pour cela, montrer (de même) que
∑

n,p∈N∗
n≤p

∣∣∣∆p

∣∣∣
n

=
+∞∑
p=1

∣∣∣∆p

∣∣∣Hp

et justifier que le résultat est fini par critère d’équivalence.



8 Utiliser wn ≤
(+∞∑
p=n

ap

)2
pour majorer (dans [0 ,+∞])

+∞∑
n=1

√
wn

n
par une somme triangulaire. Montrer alors que

la somme obtenue est finie en calculant un équivalent de
p∑

n=1

1
√
n

par comparaison série-intégrale.

9 a) Commencer par sommer à p+ q constant dans [0 ,+∞] :∑
p,q∈N∗

1
(p+ q)α

=
SF 7

+∞∑
n=2

n− 1
nα

Puis utiliser le critère d’équivalence pour les séries à
termes positifs.
Réponse : La famille est sommable ssi α > 2

b) Utiliser :
1
2

(p+ q)2 ≤ p2 + q2 ≤ (p+ q)2 pour encadrer la

somme dans [0 ,+∞] par une somme similaire à celle de
la question a). Réponse : La famille est sommable ssi α > 1

c) En sommant à p+ q constant dans [0 ,+∞] ( SF 7 ) puis en
séparant la somme intérieure on fait apparaître la somme
des k et la somme des k2 qui, une fois calculées donnent∑

p,q∈N∗

pq

(p+ q)α
=

1
6

+∞∑
n=2

n2 − 1
nα−1

Utiliser le critère d’équivalence pour les séries à termes
positifs.
Réponse : La famille est sommable ssi α > 4

d) Commencer par montrer que

pα + qα ≤ 2(p+ q)α et (p+ q)α ≤ 2α(pα + qα)

(pour la seconde distinguer les cas où p ≥ q et p ≤ q)
Ceci permet d’encadrer la somme dans [0 ,+∞] par la
somme de la question a).

10 Commencer par un calcul formel en sommant à p + q
constant :

S =
∑
p,q∈N

apbq

(p+ q)!
=

SF 7

+∞∑
n=0

1
n!

n∑
p=0

apbn−p

Pour calculer la somme intérieure :

• Si a , b, utiliser an+1 − bn+1 = (a− b)
n∑

p=0

apbn−p

pour faire apparaître deux séries exponentielles :

Réponse : S =
aea − beb

a− b
.

• Si a = b, la somme intérieure vaut (n+ 1)an ce qui permet
ensuite de séparer la somme en n en deux séries exponen-
tielles
Réponse : S = (a+ 1)ea.

Justifier le calcul a posteriori en montrant que( apbq

(p+ q)!

)
p,q∈N

est sommable : il suffit pour cela de cal-

culer
∑
p,q∈N

|a|p |b|q

(p+ q)!
dans [0 ,+∞] exactement de la même

façon.

11 • Sommabilité. Par majoration avec∣∣∣∣∣ (−1)p+q

2p3q(p+ q+ 1)

∣∣∣∣∣ ≤ 1
2p

1
3q

• Somme. Sommer à « p+ q constant »∑
p,q∈N

(−1)p+q

2p3q(p+ q+ 1)
=

SF 7

+∞∑
n=0

n∑
p=0

(−1)n

2p3n−p(n+ 1)

La somme en p se ramène à une somme géométrique de

raison
3
2

.

On obtient :∑
p,q∈N

(−1)p+q

2p3q(p+ q+ 1)
= 3

+∞∑
n=0

(−1)n

n+ 1

(1
2

)n
− 2

+∞∑
n=0

(−1)n

n+ 1

(1
3

)n
Réindexer les sommes via k = n+1 puis utiliser le résultat

fourni par l’énoncé avec : x =
1
2

et x =
1
3

.

Réponse :
∑
p,q∈N

(−1)p+q

2p3q(p+ q+ 1)
= 12ln3− 18ln2

12 1. Sommer à « p+ q constant »∑
p,q∈N∗

1
pq2 + p2q

=
SF 7

+∞∑
n=2

1
n

n−1∑
k=1

1
k(n− k)

Effectuer une D.E.S. de
1

X(n−X)
dans la somme inté-

rieure puis séparer et réindexer la deuxième somme.
2. Avec Fubini positif :∑

p,q∈N∗

1
pq2 + p2q

=
+∞∑
p=1

1
p

+∞∑
q=1

1
q(p+ q)

Effectuer une D.E.S. de
1

X(p+X)
puis remarquer que

+∞∑
q=1

1
q
− 1
p+ q

= Hp (observer les termes communs aux

deux sommes qui se simplifient).

13 Exprimer formellement la somme comme une somme

double en utilisant «
1

1− q
=

+∞∑
k=0

qk » :

S =
+∞∑
n=0

z2n

1− z2n+1 =
+∞∑
n=0

+∞∑
k=0

z2n(2k+1)

Utiliser ensuite le théorème de sommation par paquets en
découpantN∗ à « à valuation 2-adique constante » i.e. avec

la partition : N
∗ =

+∞⋃
n=1

{2n(2k + 1) ; k ∈N}︸                  ︷︷                  ︸
Ensemble des a ∈N∗ t.q. v2(a) = n

La somme devient : S =
+∞∑
a=1

za.

Le calcul se justifie a posteriori en prouvant que la famille
(za))a∈N∗ est sommable.

2



14 a) Utiliser le théorème sur les familles « produit »

Réponse : S1 =
π4

36
.

b) utiliser le théorème de sommation par paquets avec la
partition :

{(p,q) ∈N∗ ×N∗ | p | q} =
+∞⋃
p=1

{(
p,

k

p

)
; k ≥ 1

}

Réponse : S2 =
π6

540
.

c) On peut exprimer S1 en fonction de S3 en découpant
N
∗ ×N∗ « à PGCD constant ». Précisément, réexprimer

S1 à l’aide du théorème de sommation par paquets avec
la partition :

N
∗ ×N∗ =

+∞⋃
d=1

{(p,q) ∈N∗ ×N∗ | p∧ q = d}

puis effectuer le changement d’indice (p,q) = (dp′ ,dq′)
dans la somme intérieure.
Réponse : S3 =

5
2
.

15 1. Dans [0 ,+∞] :

• calculer le produit ζ(α)×ζ(α) en utilisant le théorème
sur les familles « produit »

• utiliser le théorème de sommation par paquets avec la

partition : N
∗ ×N∗ =

+∞⋃
n=1

{(
d,

n

d

)
; d ≥ 1 et d | n

}
2. Même principe.

16 1. Remarquer que |λ(n)| = 1 pour tout n ∈N puis procéder

par critère d’équivalence en utilisant la convergence de∑
|x|n.

2. Pour la première égalité :

• Remarquer que
xn

1− xn
=

+∞∑
k=1

xnk

• utiliser le théorème de sommation par paquets avec la
partition :

N
∗ ×N∗ =

+∞⋃
m=1

{(
d,

m

d

)
; d ≥ 1 et d |m

}
La deuxième égalité repose sur le calcul explicite de σ (m)
pour tout m ≥ 1. Il s’agit plus précisément de montrer
que σ (m) = 1 si m est le carré d’un entier i.e.m = n2 pour
un certain n ∈N∗ et σ (m) = 0 sinon.
Pour cela, noter que si m est décomposé en facteurs pre-
miers : m = p

α1
1 . . .p

αn
n alors les diviseurs de m sont

les d = p
k1
1 . . .p

kn
n pour 0 ≤ k1 ≤ α1, . . ., 0 ≤ kn ≤ αn. Les

propriétés de λ assurent que λ(d) = (−1)k1 × · · · × (−1)kn

ce qui donne : σ (m) =
( α1∑
k1=0

(−1)k1

)
× · · · ×

( αn∑
kn=0

(−1)kn
)

Il suffit alors de calculer les sommes géométriques en
notant que le résultat vaut 0 si l’un des αi est impair et
1 si tous les αi sont pairs.

17 1. Si n est décomposé en facteurs premiers :

n = p
α1
1 . . .p

αr
r

alors les diviseurs de n sont les d = p
k1
1 . . .p

kr
r pour

0 ≤ k1 ≤ α1, . . ., 0 ≤ kr ≤ αr . La définition de Λ assure
que la somme se réduit aux termes de la forme Λ(pkii )
pour 1 ≤ ki ≤ αi (ki termes qui valent tous ln(pi)).

2. Utiliser le théorème de sommation par paquets avec la
partition :

N
∗ ×N∗ =

+∞⋃
m=1

{(
d,

m

d

)
; d ≥ 1 et d |m

}
3. Par comparaison série-intégrale montrer que :

ζ(α) =
α→1+

1
α − 1

+O(1) et
+∞∑
n=1

lnn

nα
=

1
(α − 1)2 +O(1)

et en déduire avec la question précédente que :
+∞∑
n=1

Λ(n)
nα

=
α→1+

1
α − 1

+O(1)

Avec la définition de Λ :
+∞∑
n=1

Λ(n)
nα

=
∑
p∈P

lnp

pα
+
∑
p∈P

+∞∑
k=2

lnp

pkα︸       ︷︷       ︸
=R(α)

Montrer que R(α) = O(1) en le majorant indépendam-
ment de α par exemple en notant que

0 ≤ R(α) ≤
+∞∑
n=2

+∞∑
k=2

lnn

nk

puis en montrant que la dernière somme obtenue est
finie.

18 Commencer par un calcul formel en écrivant :∑
p,q≥2

(−1)p

qp
=

+∞∑
q=2

+∞∑
p=2

(−1
q

)p
La somme intérieure est une somme géométrique de raison
−1
q

donc calculable explicitement. On obtient ensuite une

somme téléscopique (via une D.E.S.).

Réponse :
∑
p,q≥2

(−1)p

qp
=

1
2

Le calcul est justifié a posteriori par le théorème de Fubini à

condition que la famille
( (−1)p

qp

)
p,q≥2

soit sommable : calcu-

ler
∑
p,q≥2

1
qp

dans [0 ,+∞] exactement de la même façon que

dans le calcul formel.

19 Dans chaque cas, pour l’étude de sommabilité, calculer∑
(i,j)∈I×J

∣∣∣ui,j ∣∣∣ dans [0 ,+∞] où « tout est permis ». Lorsque

le résultat est fini, le calcul de
∑

(i,j)∈I×J
ui,j se conduit de la

même façon
a) On fait apparaître une somme double avec une série géo-

métrique (en p) et une série exponentielle (en q).
Réponse :

la famille est sommable ssi |z| < 1 et
∑
p,q∈N

zp

q!
=

e

1− z

3



b) Avec le théorème de Fubini, on a affaire à une série expo-
nentielle deux fois d’affilée.
Réponse :

la famille est toujours sommable et
∑
p,q∈N

qpzp

p!q!
= ee

z

c) Sommer à « p + q constant » ( SF 7 )on fait apparaître une
somme binomiale, puis une série géométrique.

Réponse : la famille est sommable ssi |z| <
1
2
et dans ce cas∑

p,q∈N

(
p+ q

p

)
zp+q =

1
1− 2z

d) Réponse : La famille n’est jamais sommable.

20 1. Sous réserve de sommabilité de la famille (zp(2q−1))p,q≥1,

le théorème de Fubini permet d’écrire :∑
p,q≥1

zp(2q−1) =
+∞∑
q=1

+∞∑
p=1

(z2q−1)p

︸       ︷︷       ︸
somme géo de
raison z2q−1

=
+∞∑
p=1

1
zp

+∞∑
q=1

(z2p)q

︸    ︷︷    ︸
somme géo de

raison z2p

Le résultat s’obtient en explicitant les sommes géomé-
triques.
Pour justifier la sommabilité, en procédant de même
avec Fubini positif, on obtient :∑

p,q≥1

|z|p(2q−1) =
+∞∑
p=1

|z|p

1− |z|2p

Justifier que le résultat est fini par exemple par critère

d’équivalence à l’aide d’un équivalent de
|z|p

1− |z|2p

2. Remarquer que :
zp+1

1− zp+1 =
+∞∑
q=1

zq(p+1)

Procéder alors de la même façon qu’à la question 1 avec
la famille

(
(−1)pzq(p+1)

)
p≥0,q≥1

.

21 1. La somme est définie dans [0 ,+∞] et vaut :

S =
+∞∑
n=2

ζ(n)− 1
n

=
+∞∑
n=2

+∞∑
k=2

1
n

(1
k

)n
Utiliser le théorème de Fubini puis calculer

+∞∑
n=2

1
n

(1
k

)n
en

remarquant que la formule donnée par l’énoncé évaluée
en −x donne :

∀x ∈ [−1 ,1[,
+∞∑
n=1

1
n
xk = − ln(1− x)

On obtient : S =
+∞∑
k=2

(
ln(k)− ln(k − 1)− 1

k

)
.

Revenir aux sommes partielles S = lim
N→+∞

N∑
k=2

... en utili-

sant HN = lnN +γ + o(1).

2. Attention, utiliser le théorème de Fubini est ici illégal. Pré-

cisément on ne peut pas écrire :
+∞∑
n=2

(−1)n
ζ(n)
n

=
+∞∑
n=2

+∞∑
k=1

(−1)n

n

(1
k

)n
=

+∞∑
k=1

+∞∑
n=2

(−1)n
1
n

(1
k

)n
parce que la famille

(
uk,n

)
k≥1,n≥2

=
( (−1)n

n

1
k

)
k≥1,n≥2

n’est

pas sommable (la sous-famille (u1,n)n≥1 ne l’est pas)
En revanche, la question 1. assure que l’on peut écrire :
+∞∑
n=2

(−1)n
ζ(n)− 1

n
=

+∞∑
n=2

+∞∑
k=2

(−1)n

n

(1
k

)n
=

+∞∑
k=2

+∞∑
n=2

(−1)n
1
n

(1
k

)n
parce que la famille

(1
n

1
k

)
k ≥ 2 ,n≥2

est sommable.

L’idée est donc d’écrire :
+∞∑
n=2

(−1)n
ζ(n)
n

=
+∞∑
n=2

(−1)n
ζ(n)− 1

n
+

+∞∑
n=2

(−1)n
1
n

puis :

• De calculer
+∞∑
n=2

(−1)n
ζ(n)− 1

n
avec le théorème de Fu-

bini (calcul similaire à celui de la question 1.)

• De calculer
+∞∑
n=2

(−1)n
1
n

en utilisant la formule de

l’énoncé avec x = 1

22 1. Se donner une partition multiplicative de n revient à

se donner une liste d’exposants α2, . . . ,αn ∈N tels que
2α23α3 . . .nαn = n (où αi est le nombre de facteurs dj tel
que dj = i). En conséquence un = |En| où

En =
{
(α2, . . . ,αn) ∈Nn−1 | 2α23α3 . . .nαn = n

}
2. Avec le résultat de 1. et le théorème sur les familles pro-

duits, majorer
un
ns

par
n∏
i=2

+∞∑
α=0

1
iαs

=
n∏
i=2

1
1− i−s

.

Il suffit de montrer que cette dernière quantité est ma-
jorée (elle est positive). En prenant son logarithme il

suffit par exemple de montrer que
+∞∑
i=1

− ln(1− i−s) < +∞

(utiliser le critère d’équivalence pour les séries à termes
positifs).

23 Avec Fubini positif :∑
(p,q)∈N×N∗

1
(p+ q2)(p+ q2 + 1)

=
+∞∑
q=1

+∞∑
p=0

1
(p+ q2)(p+ q2 + 1)

En effectuant une D.E.S. de
1

(X + q2)(X + q2 + 1)
, la somme

intérieure devient télescopique.

24 Plusieurs possibilités pour calculer S =
∑

p,q∈N∗

1
pq(p+ q+ 1)

dans [0 ,+∞]

• Option 1. A « p+q constant » S =
SF 7

+∞∑
n=2

n−1∑
k=1

1
(n+ 1)k(n− k)

En effectuant une D.E.S. de
1

X(n−X)
dans la somme inté-

4



rieure puis après séparation et réindexation

S = 2
+∞∑
n=2

1
n(n+ 1)

n−1∑
k=1

1
k

Il reste à échanger les sommes triangulaires ( SF 6 ) pour

faire apparaître des télescopages via
1

n(n+ 1)
=

1
n
− 1
n+ 1

.

• Option 2. Avec Fubini positif : S =
+∞∑
p=1

+∞∑
q=1

1
q(p+ q+ 1)

En effectuant une D.E.S. de
1

X(X + p+ 1)
puis après sim-

plifications : S =
+∞∑
p=1

p+1∑
q=1

1
qp(p+ 1)

.

Il reste à échanger les sommes triangulaires ( SF 6 en met-
tant de côté les termes correspondants à q = 1) pour faire

apparaître des télescopages grâce à
1

p(p+ 1)
=

1
p
− 1
p+ 1

.

25 Par décomposition F(X) =
1

X(X + 1) . . . (X +n)
en éléments

simples.

Réponse à trouver : F(X) =
n∑

k=0

(−1)k

k!(n− k)!
1

X + k

Le résultat s’obtient formellement en replaçant
1

z(z+ 1) . . . (z+n)
à l’aide de la DES puis en intervertissant

les sommes triangulaires ( SF 6 ).
Justifier le calcul a posteriori en montrant que la famille( (−1)k

k!(n− k)!
1

z+ k

)
k,n∈N∗
k≤n

est sommable : on obtient de même

∑
k,n∈N∗
k≤n

1
k!(n− k)!

1
|z+ k|

= e
+∞∑
k=0

1
k! |z+ k|

. Justifier que le résul-

tat est fini par exemple par critère d’équivalence.

26
∑

wn est le produit de Cauchy de
∑ 1

2n et de
∑ 3n

n!
.

27 Utiliser la factorisation de an+1 − bn+1 pour faire apparaître
un produit de Cauchy.

28 Procéder par récurrence sur p. Pour l’hérédité écrire :
1

(1− z)p+2 =
1

(1− z)p+1 ×
1

1− z
puis utiliser le théorème relatif à la convergence absolue du

produit de Cauchy de
∑(

n+ p

p

)
zn et

∑
zn.

29 N.B. Si on suppose
∑

bn absolument convergente, alors il
s’agit d’une conséquence du théorème sur le produit de Cauchy.
L’objet de l’exercice est de montrer de montrer que la convergence
de la série

∑
cn reste valable sans l’hypothèse de convergence

absolue sur
∑

bn : c’est le théorème de Mertens

Revenir aux sommes partielles. Poser pour tout N ∈N :

AN =
N∑
n=0

an BN =
N∑
n=0

bn et CN =
N∑
n=0

cn

Il suffit de montrer que CN −ANBN −→
N→+∞

0.

Commencer par montrer que pour tout N ∈N :

CN −ANBN =
N∑
k=0

ak(BN−k −BN )

Revenir à la définition de la limite. Etant donné ε > 0, les hy-
pothèses assurent l’existence de n0 tel que pour tout n ≥ n0 :∣∣∣∣∣∣∣

+∞∑
k=n+1

bk

∣∣∣∣∣∣∣ ≤ ε et
+∞∑

k=n+1

|ak | ≤ ε

Ensuite : |CN −ANBN | ≤
N∑
k=0

|ak | |BN−k −BN |.

Pour N ≥ 2n0, couper la somme en deux en l’indice k = n0 :

• Dans
n0∑
k=0

|ak | |BN−k −BN |, on peut majorer :

• les |BN−k −BN | par 2ε

•
n0∑
k=0

|ak | par une constante M.

• Dans
N∑

k=n0+1

|ak | |BN−k −BN |, on peut majorer :

• les |BN−k −BN | par une constante M ′

• puis
N∑

k=n0+1

|ak | par ε.
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