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Familles sommables Exercices

Notation. Pour tout α > 1, on pose : ζ(α) =
+∞∑
k=1

1
kα

.

■ Sommation par paquets

1 SF 1 SF 2 Soit r ∈ [0 ,1[ et θ ∈R. Justifier la sommabilité et
calculer la somme de (r |n|einθ)n∈Z.

2 SF 1 Soit f : R∗+ → R∗+, bijective et strictement croissante.

Montrer que
∑ 1

f (n)
et

∑ f −1(n)
n2 sont de même nature.

Indication : considérer les ensembles In = {k ∈N∗ | n < f (k) ≤ n+ 1}.

3 SF 1

1. Soit n ∈N∗ et a1, . . . , an ∈N∗ deux à deux distincts.

Montrer que :
n∑

k=1

ak ≥
n∑

k=1

k.

2. Soit σ une permutation deN∗.

Montrer que la série
∑ σ (n)

n2 lnn
est divergente.

Indication : considérer les ensembles In =
{
k ∈N∗ | 2n < k ≤ 2n+1

}
.

■ Sommes triangulaires

4 SF 6 Calculer S =
+∞∑
n=0

+∞∑
k=n

1
k!

5 SF 6 Pour quels α ∈R la somme
+∞∑
n=1

+∞∑
k=n

1
kα

est elle réelle ?

6 SF 6 Soit (αn)n≥1, positive, telle que
∑

αn converge.

Pour tout entier k ≥ 1, on pose : uk = k
+∞∑
n=k

αn

n(n+ 1)

Montrer que la série
∑

uk converge et calculer sa somme.

7 SF 2 SF 6 Soit (an) ∈RN de limite nulle.
Pour tout n ≥ 1, on pose : ∆n = an − an+1.
On suppose que la série

∑
∆n lnn converge absolument.

Montrer que
∑ an

n
converge et que :

+∞∑
n=1

an
n

=
+∞∑
n=1

∆nHn

où : Hn =
n∑

k=1

1
k

pour tout n ∈N∗.

8 SF 6 Soit (an)n≥1, positive, telle que
∑√

nan converge.

Pour tout n ∈N∗, on pose : wn =
+∞∑
p=n

a2
p.

Montrer que la série
∑√

wn

n
converge.

■ Sommes « à p+ q constant »

9 SF 1 SF 7 Soit α ∈R∗+. Etudier la sommabilité de :

a)
( 1

(p+ q)α

)
p,q≥1

b)
( 1

(p2 + q2)α

)
p,q≥1

c)
( pq

(p+ q)α

)
p,q≥1

d)
( 1
pα + qα

)
p,q≥1

10 SF 2 SF 7 Soit a,b ∈C.

Justifier l’existence et calculer :
∑
p,q≥0

apbq

(p+ q)!

11 SF 2 SF 7 On admet :

∀x ∈ ]−1 ,1], ln(1 + x) =
+∞∑
k=1

(−1)k−1

k
xk

Justifier l’existence et calculer :
∑
p,q≥0

(−1)p+q

2p3q(p+ q+ 1)

12 SF 4 SF 7 On souhaite établir :
∑
p,q≥1

1
pq2 + p2q

= 2ζ(3).

1. A l’aide d’une sommation par paquets, montrer que :∑
p,q∈N∗

1
pq2 + p2q

= 2
+∞∑
n=1

Hn

n2 − 2ζ(3)

2. A l’aide , du théorème de Fubini, montrer que :∑
p,q∈N∗

1
pq2 + p2q

=
+∞∑
n=1

Hn

n2

puis conclure.

■ Découpages à base d’arithmétique

13 SF 2 Soit z ∈C tel que |z| < 1.

Montrer que :
+∞∑
n=0

z2n

1− z2n+1 =
z

1− z

14 SF 5 On admet que : ζ(2) =
π2

6
et ζ(4) =

π4

90
.

Calculer :

a) S1 =
∑
p,q≥1

1
p2q2 b) S2 =

∑
p,q≥1
p|q

1
p2q2 c) S3 =

∑
p,q≥1
p∧q=1

1
p2q2

15 SF 5 Pour tout n ∈N∗ on note :

• dn est le nombre de diviseurs positifs de n.

• sn est la somme des diviseurs positifs de n.

1. Montrer que pour tout α > 1 :
(
ζ(α)

)2
=

+∞∑
n=1

dn
nα

2. Montrer que pour tout α > 2 : ζ(α)ζ(α − 1) =
+∞∑
n=1

sn
nα



16 SF 1 SF 2 Soit λ :N∗→R telle que : λ(1) = 1, λ(p) = −1,
pour tout nombre premier p ∈ P et λ(mn) = λ(m)λ(n),
pour tous m,n ∈N∗.

1. Justifier que la série
+∞∑
n=1

λ(n)
xn

1− xn
converge absolument

pour tout x ∈ ]−1 ,1[. On note N (x) sa somme.

2. Pour tout m ∈N∗, on pose : σ (m) =
∑
d|m

λ(d).

Montrer que pour tout x ∈ ]−1 ,1[ : N (x) =
+∞∑
m=1

σ (m)xm

3. En déduire que pour tout x ∈ ]−1 ,1[ : N (x) =
+∞∑
n=1

xn
2

17 SF 5 Pour tout n ∈N∗ on pose :

Λ(n) =

lnp si n = pk pour certains p ∈ P et k ∈N∗

0 sinon

1. Montrer que pour tout n ∈N∗ :
∑
d|n

Λ(d) = lnn

2. Montrer que pour tout α > 1 : ζ(α)
+∞∑
n=1

Λ(n)
nα

=
+∞∑
n=1

lnn

nα

3. En déduire :
∑
p∈P

lnp

pα
=

α→1
α>1

1
α − 1

+O(1).

■ Théorème de Fubini

18 SF 2 SF 4 Justifier l’existence et calculer :
∑
p,q≥2

(−1)p

qp
.

19 SF 2 SF 4 SF 7 Soit z ∈C. Etudier la sommabilité et, le cas
échéant, calculer la somme de :

a)
(
zp

q!

)
p,q≥0

b)
(
qpzp

p!q!

)
p,q≥0

c)
((
p+ q

p

)
zp+q

)
p,q≥0

d)
((
p+ q

p

)
zp

)
p,q≥0

20 SF 2 SF 4 Soit z ∈C tel que : |z| < 1.

1. On considérant la famille
(
zp(2q−1)

)
p,q≥1

établir :

+∞∑
p=1

z2p−1

1− z2p−1 =
+∞∑
p=1

zp

1− z2p

2. Etablir :
+∞∑
p=0

(−1)pzp+1

1− zp+1 =
+∞∑
p=1

zp

1 + zp
.

21 SF 4 On admet : ∀x ∈ ]−1 ,1], ln(1 + x) =
+∞∑
k=1

(−1)k−1

k
xk .

On pose : γ = lim
n→+∞

( n∑
k=1

1
k
− lnn

)
(constante d’Euler).

a) Montrer que :
+∞∑
n=2

ζ(n)− 1
n

= 1−γ

b) Montrer que :
+∞∑
n=2

(−1)n
ζ(n)
n

= γ

22 SF 4 Soit n ∈N∗. On appelle partition multiplicative de n
toute liste (d1, . . . ,dr ) d’entiers tels que 1 < d1 ≤ · · · ≤ dr pour
laquelle d1 . . .dr = n. Pour tout n ∈N∗, on note un le nombre
de partitions multiplicatives de n.
1. Montrer que pour tout s > 1 :

un
ns

=
∑

α2,...,αn∈N
2α2 3α3 ...nαn=n

1
2α23α3 . . .nαn

2. En déduire que pour tout s > 1 : un = O(ns).

■ Avec des décompositions en éléments simples

23 SF 4 Montrer que :
∑

(p,q)∈N×N∗

1
(p+ q2)(p+ q2 + 1)

= ζ(2).

24 SF 7 SF 6 Montrer que :
∑

p,q∈N∗

1
pq(p+ q+ 1)

= 2.

25 SF 6 SF 2 Soit z ∈C \ {Z−}.

Montrer que :
+∞∑
n=0

1
z(z+ 1) . . . (z+n)

= e
+∞∑
n=0

(−1)n

n!(z+n)
.

■ Produit de Cauchy

26 SF 9 Pour tout n ∈N, on pose : wn =
1
2n

n∑
k=0

6k

k!
.

Montrer que la série
∑

wn converge et calculer sa somme.

27 SF 9 Soient a,b ∈C distincts tels que : |a| < 1 et |b| < 1.

Etablir :
+∞∑
n=0

an+1 − bn+1

a− b
=

1
1− (a+ b) + ab

.

28 SF 8 Soit z ∈ C tel que |z| < 1. Montrer que la série∑(
n+ p

p

)
zn converge absolument pour tout p ∈N et que :

+∞∑
n=0

(
n+ p

p

)
zn =

1
(1− z)p+1

29 On suppose
∑

an absolument convergente et
∑

bn conver-

gente. Pour tout n ∈N on pose : cn =
n∑

k=0

akbn−k . Montrer

que
∑

cn est convergente et que :
+∞∑
n=0

cn =
(+∞∑
n=0

an

)(+∞∑
n=0

bn

)
.

2


