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Déterminants Indications

1

2 Exploiter notamment la propriété det(A⊤) = det(A)

3 1. En notant f l’endomorphisme canoniquement associé

à A, il s’agit de montrer qu’il existe une base B de Kn

dans laquelle

MatBf =


0 0 . . . x

0 0 . . . x

...
...

...
0 0 . . . x


(où les x désignent des coefficients quelconques).
Prendre une base (b1, . . . , bn−1) de Kerf , complétée en
une base (b1, . . . , bn) deKn.

2. Si B =


0 0 . . . b1,n
0 0 . . . b2,n
...

...
...

0 0 . . . bn,n

 vérifier que det(In +B) = 1 + tr(B).

L’égalité sur A en découle en utilisant l’exercice ??

4 1. Factoriser A2 + tIn = (A+ i
√
tIn)(A− i

√
tIn)

2. a) Posant B = M + tIn pour tout t ∈R

det(B) =
∑
σ∈Sn

ε(σ )
n∏

j=1

bσ (j),j︸    ︷︷    ︸
=pσ (t)

où bi,j =

mi,j si i , j
mi,i + t sinon

Remarquer chaque fonction pσ est polynomiale et :

• si σ = Id alors pσ est de degré n

• si σ , Id alors pσ est de degré inférieur à n− 1

b) Procéder par l’absurde : si −In = A2 +B2, alors pour
tout t ∈ [0 ,1] : −(A+ tIn) = B+ (1− t)In.
Prendre le déterminant de cette égalité et dénicher
une contradiction avec les deux questions qui pré-
cèdent.

5 Deux méthodes sont possibles :

• Méthode 1 : par linéarité selon les lignes et le colonnes.

det(B) =

∣∣∣∣∣∣∣∣∣∣
(−1)1+1a1,1 (−1)1+2a1,2 . . . (−1)1+na1,n
(−1)2+1a2,1 (−1)2+2a2,2 . . . (−1)2+na2,n

...
...

...
(−1)n+1an,1 (−1)n+2an,2 . . . (−1)n+nan,n

∣∣∣∣∣∣∣∣∣∣
Factoriser :

• Toute la première colonne par (−1)1

• Toute la deuxième colonne par (−1)2

• . . .
• Toute la dernière colonne par (−1)n

Ce qui donne

detB=(−1)1×(−1)2×· · ·×(−1)n

∣∣∣∣∣∣∣∣∣∣
(−1)1a1,1 (−1)1a1,2 . . . (−1)1a1,n
(−1)2a2,1 (−1)2a2,2 . . . (−1)2a2,n

...
...

...
(−1)nan,1 (−1)nan,2 . . . (−1)nan,n

∣∣∣∣∣∣∣∣∣∣
Faire les même factorisations mais cette fois selon les lignes

• Méthode 2 : avec det(B) =
∑

σ∈Sn
ε(σ )

n∏
j=1

bσ (j),j .

Remplacer bσ (j),j = (−1)σ (j)+jaσ (j),j = (−1)σ (j)(−1)jaσ (j),j

Séparer les produits en remarquant qu’après réindexation
n∏

j=1

(−1)σ (j) =
k=σ (j)

n∏
k=1

(−1)k

on finit par trouver : det(B) =
∑
σ∈Sn

ε(σ )
n∏

j=1

aσ (j),j = det(A)

6 Les colonnes sont liées : chaque colonne est une combinai-

son linéaire de : S =

sina1
...

sinan

 et C =

cosa1
...

cosan

.

7 Procéder par analyse-synthèse.

• Analyse. Si A convient en posant r = rgA on peut écrire
A = UJrV où U,V ∈ GLn(K). En prenant X = UYV dans
l’égalité puis en simplifiant par det(U ) et det(V ) constater
que Jr doit vérifier

∀Y ∈Mn(R), det(Jr +Y ) = det(Y )

Prendre alors Y = In et calculer les déterminants.
L’égalité obtenue montre que nécessairement r = 0 i.e. A
est nulle.

• La synthèse n’est pas difficile.

8 Montrer que

ϕ : (x1, . . . ,xn) 7→
n∑

k=1

detB(x1, . . . ,xk−1, f (xk),xk+1, . . . ,xn)

est une forme n-linéaire alternée sur E.
Pat théorème ceci assurera que ϕ = λdetB où λ est donné
par λ = ϕ(b1, . . . , bn).
Reste ensuite à montrer que ϕ(b1, . . . , bn) = trf .
Pour cela on peut calculer ϕ(b1, . . . , bn) en décomposant
chaque f (bk) dans la base B i.e. en écrivant

f (bk) =
n∑
i=1

ai,kbi où A = MatBf

Le caractère alterné de detB assure que

detB(b1, . . . ,
n∑
i=1

ai,kbi , . . . , bn) = detB(b1, . . . , ak,kbk , . . . , bn)

Avec la n-linéarité du déterminant on obtient

ϕ(b1, . . . , bn) =
n∑

k=1

ak,k detB(b1, . . . ,bk , . . . , bn)︸                      ︷︷                      ︸
=1

= tr(A) = tr(f )

9 1. Les coefficients de M vérifient mi,j =

aj−i si j ≥ i

an+j−i si j < i
.

Calculer (MV )i,j à l’aide de la définition en coupant
la somme en l’indice k = i − 1 puis réindexer les deux
sommes obtenues pour les mettre sous la forme

∑
aℓ . . .

2. Calculer det(MV ) de deux façons :

• D’une part det(MV ) = det(M)det(V )
• D’autre part si on note V = (C1|C2|. . . |Cn) (écriture en

colonnes) alors MV =
(
P (1)C1|P (ω)C2|. . . |P (ωn−1)Cn

)
.

10 1. Cn−2[X] est de dimension n− 1.

2. Vérifier qu’il s’agit en fait du déterminant de la fa-
mille

(
P (X), P (X + 1), . . . , P (X + n − 1)

)
dans la base



B = (L1, . . . ,Ln) de Cn−1[X] formée des polynômes de
Lagrange associés aux points 1, . . . ,n.

11 M est inversible si et seulement si det(M) , 0.
On trouve : det(M) = −(m+ 3)(m2 +m+ 1).

12 1. Utiliser cosθ =
1− t2

1 + t2 pour t = tan
θ

2
puis opérer sur les

colonnes.

2. a) Utiliser γ = tan
(π

2
−
( a

2
+
b

2

))
=

1

tan
( a

2
+
b

2

) puis une

formule de trigonométrie.
b) En notant s = α + β + γ et p = αβγ , remarquer que

α,β,γ sont les racines de P (X) = X3− sX2 +X−p. Ceci
assure que les colonnes sont liées dans le déterminant
obtenu à la question 1.

13 On se ramène à des déterminants triangulaires par des
opérations élémentaires (méthode du pivot).
Réponses à trouver :

a) D = −ab(a+ b) b) D = (c − b)(b − a)(c − a)

c) D = (a+ b+ c)3 d) D = a(a− b)3

14 Réponse à trouver : ∆ = 2

∣∣∣∣∣∣∣
a b c

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣ = 2abcV (a,b,c).

On peut par exemple commencer par l’opération

C1← C1 −C2 +C3

puis utiliser la première colonne pour simplifier les autres.

15 L’identité ω3 = 1 assure que les colonnes sont liées :
C2 = ω2C1 et C3 = ωC1. Le cours donne la valeur du dé-
terminant sans calcul.

16 On se ramène à un déterminant triangulaire en faisant les
opérations Ln←− Ln−Ln−1, puis Ln−1←− Ln−1−Ln−2, puis . . .
puis enfin L1←− L1−L2.

17 Deux méthodes (au moins) sont possibles.

• Méthode 1 : par opérations élémentaires. Par échanges de
colonnes, on se ramène à∣∣∣∣∣∣∣∣∣∣

a1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 an

∣∣∣∣∣∣∣∣∣∣ = a1 × · · · × an

Attention cependant : chaque échange de colonne multiplie
le déterminant par −1 donc il s’agit de compter le nombre
d’échange de colonnes. Distinguer les cas n pair et n impair

• Méthode 2 : par récurrence en développant selon les lignes.. En
notant D(a1, . . . , an) le déterminant dont il est question et
en développant selon la première ligne, on obtient

D(a1, . . . , an) = (−1)n+1anD(a1, . . . , an−1)

18 Noter B = λIn−M puis utiliser la définition du déterminant

det(B) =
∑
σ∈Sn

ε(σ )
n∏

j=1

bσ (j),j

Les variables bσ (j),j sont indépendantes donc

E(det(B)) =
∑
σ∈Sn

ε(σ )
n∏

j=1

E(bσ (j),j )

Autrement dit : E(det(λIn −M)) = det(λIn −E(M))
où E(M) = (E(Xi,j ))1≤i,j≤n est une matrice dont tous les coef-
ficients valent m. On est ramené à un déterminant simple.

19 a) Deux méthodes (au moins) sont possibles.

• Méthode 1 : par récurrence en développant selon les lignes..
En notant Dn le déterminant dont il est question et en
développant selon L2, on obtient Dn = −1 +Dn−1

• Méthode 2 : par opérations élémentaires. L’opération C1←
C1 −C2 − · · · −Cn transforme le déterminant en un déter-
minant triangulaire supérieur.

b) La somme des coefficients de chaque colonne est iden-
tique et vaut n + x. La méthode usuelle vue en cours
s’applique dans ce cas :
Réponse finale : xn−1(n+ x).

20 1. Ma est inversible ssi det(Ma) , 0.

Il s’agit ainsi de calculer det(Ma).
Développer selon la première colonne :

det(Ma) = −1×

∣∣∣∣∣∣∣∣∣∣
−1 a

. . .
. . .
. . . a

−1

∣∣∣∣∣∣∣∣∣∣+(−1)n+1a

∣∣∣∣∣∣∣∣∣∣
a

−1
. . .

. . .
−1 a

∣∣∣∣∣∣∣∣∣∣
Les deux déterminants obtenus sont triangulaires.
Réponse finale : det(Ma) = (−1)n(1− an)
Ainsi Ma est inversible ssi an , 1 i.e. ssi a <Un

2. Avec la question 1 :

• si a <Un, Ma est inversible donc de rang n.
• si a ∈Un i.e. si an = 1 alors rgMa ≤ n− 1.

On peut envisager de montrer que rgMa = n− 1.
Il suffit donc de montrer que rgMa ≥ n− 1.
Pour cela constater que la matrice extraite obtenue en
enlevant la première ligne et la première colonne est
inversible.

21 Il s’agit de déterminants tridiagonaux : suivre la stratégie

du savoir-faire SF 6

a) Réponse à trouver :

• si x , ±1 : Dn =
1− x2(n+1)

1− x2 .

• si x = ±1 : Dn = n+ 1.

b) Réponse à trouver : Dn =
sin

(
(n+ 1)θ

)
sinθ

22 1. Effectuer les opérations Cj ←− Cj−C1 pour j ≥ 2 :

f (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a+ x c − a . . . c − a

b+ x a− b
. . .

...
... 0

. . .
. . .

...
...

...
. . .

. . . c − a
b+ x 0 . . . 0 a− b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Ne pas chercher à calculer le déterminant obtenu.
L’intérêt est que x n’apparaît que dans les coefficients de

2



la première colonne.
En développant par rapport à C1 on obtient

f (x) = (a+ x)∆1,1 +
n∑
i=2

(b+ x)(−1)i+1∆i,1︸                                     ︷︷                                     ︸
de la forme mx+ p

= mx+ p

pour certaines constantes m et p

2. Avec la 1,

∀x ∈R, mx+ p = f (x) =

∣∣∣∣∣∣∣∣∣∣
a+ x c+ x . . . c+ x

b+ x
. . .

. . .
...

...
. . .

. . . c+ x
b+ x . . . b+ x a+ x

∣∣∣∣∣∣∣∣∣∣
Il suffit de trouver deux valeurs de x pour lesquelles
on sait calculer le déterminant pour former un système
d’inconnues m et p.
Les valeurs x = −b et x = −c donnent des déterminants
triangulaires.
Réponse à trouver :

m =
(a− b)n − (a− c)n

c − b
et p =

c(a− b)n − b(a− c)n

c − b

23 On peut (entre autres) procéder par récurrence sur n.
Pour l’hérédité, la linéarité par rapport à la dernière colonne
permet d’écrire∣∣∣∣∣∣∣∣∣∣

1 + a1 1 . . . 1

1 1 + a2
. . .

...
...

. . .
. . . 1

1 . . . 1 1 + an+1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1 + a1 1 . . . 1

1 1 + a2
. . .

...
...

. . .
. . . 1

1 . . . 1 1

∣∣∣∣∣∣∣∣∣︸                  ︷︷                  ︸
D1

+

∣∣∣∣∣∣∣∣∣
1 + a1 1 . . . 0

1 1 + a2
. . .

...
...

. . .
. . . 0

1 . . . 1 an+1

∣∣∣∣∣∣∣∣∣︸                     ︷︷                     ︸
D2

• En effectuant Cj → Cj −Cn on trouve : D1 = a1 . . . an

• En développant par rapport à Cn :

D2 = an+1

∣∣∣∣∣∣∣∣∣
1 + a1 1 . . . 1

1 1 + a2
. . .

...
...

. . .
. . . 1

1 . . . 1 1 + an

∣∣∣∣∣∣∣∣∣
et on peut appliquer l’hypothèse de récurrence.

24 • Faire d’abord les opérations : Ln+1 ←− Ln+1−Ln, puis

Ln ←− Ln−Ln−1 . . ., puis enfin L1 ←− L1−L2 et simpli-
fier les coefficients en utilisant la formule de Pascal(n+1

p

)
−
(n
p

)
=

( n
p−1

)
• Développer par rapport à la première colonne.

• Faire ensuite les opérations : Cn ←− Cn−Cn−1, puis
Cn−1 ←− Cn−1−Cn−2 . . ., puis enfin C1 ←− C1−C2 et sim-
plifier les coefficients en utilisant la formule de Pascal(n+1
p+1

)
−
(n
p

)
=

( n
p+1

)
• On obtient Dn = Dn−1.

• On en déduit que Dn = D1 = 1.

25 1. Développer selon la dernière ligne :

∆n = (−1)× an ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 . . . 0

a1
. . .

. . .
. . .

...

0
. . .

. . . −1 0
...

. . . an−2 1 0
0 . . . 0 an−1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+∆n−1

Développer le premier déterminant selon la dernière
colonne pour obtenir la relation demandée.

2. Procéder par récurrence double sur n.
3. • Si (∆)n converge alors la série

∑
an est majorée et à

termes positifs.
• Si

∑
an converge alors cette série et majorée.

Ceci permet de majorer (∆n) en utilisant 1 + ak ≤ eak .
La relation de récurrence de la question a) permet de
montrer que cette suite est par ailleurs croissante.

26 Procéder par récurrence sur n. Pour l’hérédité, développer
par rapport à une ligne

27 Pour l’étape d’hérédité, si x1, . . . ,xn sont fixés tels que

M =
(
fj (xi)

)
est inversible considérer la fonction

D : x 7→

∣∣∣∣∣∣∣∣∣∣∣∣
f1(x1) . . . fn(x1) fn+1(x1)

...
...

...
f1(xn) . . . fn(xn) fn+1(xn)
f1(x) . . . fn(x) fn+1(x)

∣∣∣∣∣∣∣∣∣∣∣∣
Il s’agit de montrer que D n’est pas la fonction nulle. On
peut par exemple procéder par l’absurde et développer D
par rapport à la dernière ligne. On obtient une combinai-
son linéaire nulle de (f1, . . . , fn) dont le coefficient de fn vaut
±det(M) , 0.

28 L’indication de l’énoncé permet de se ramener à des déter-
minants triangulaires par blocs

29 Par opérations élémentaires on transforme
∣∣∣∣∣A B
B A

∣∣∣∣∣ en∣∣∣∣∣A+B 0
0 A−B

∣∣∣∣∣ = det(A + B)det(A − B) (déterminant diago-

nal par bloc). Pour cela, commencer par soustraire le « bloc
des n dernières colonnes » au « bloc des n premières co-
lonnes » i.e. effectuer C1←− C1−Cn+1, . . . Cn←− Cn−C2n ce

qui donne
∣∣∣∣∣A B
B A

∣∣∣∣∣ =
∣∣∣∣∣A+B A+B

B A

∣∣∣∣∣
il suffit alors de soustraire le « bloc des n premières
lignes » au « bloc des n dernières lignes »

30 Utiliser : (⋆) A×Com(A)⊤ = det(A)In

• Si A est inversible (⋆) permet de trouver B telle que
B×Com(A)⊤ = In.

• Si Com(A)⊤ est inversible, raisonner par l’absurde en
supposant A non inversible.

31 1. a) Si rg(A) = n− 1 alors A possède une matrice extraite

de taille (n− 1) qui est inversible
b) Se rappeler que si A×B = 0 alors ImB ⊂ KerA.
c) rg(Com(A)) = rg(Com(A)⊤) et utiliser b) et a).

3



2. Si rg(A) < n − 1 alors A ne possède aucune matrice ex-
traite de taille (n− 1) et inversible.

32 a) Prendre le déterminant de l’égalité

(⋆) A×Com(A)⊤ = det(A)In
en utilisant les propriétés du déterminant.
On obtient : det(Com(A)) = det(A)n−1.

b) On cherche Com(M) où M = Com(A). Or

M ×Com(M)⊤ = det(M)In
donc en transposant

Com(M)×M⊤ = det(M)In

33 1. Utiliser det(A) =
∑
σ∈Sn

ε(σ )
n∏

j=1

aσ (j),j .

2. Si A−1 ∈Mn(Z) noter que :

• det(A) ∈Z
• 1

detA = det(A−1) ∈Z

Pour la réciproque utiliser A−1 =
1

det(A)
ComA⊤ et justi-

fier que :

•
1

det(A)
est entier

• Com(A) est à coefficients entiers.

34 Ecrire une relation de Bézout entre det(A) et det(B) et se
rappeler que

det(A)In = A×Com(A)⊤ et det(B)In = B×Com(B)⊤

35 1. Prendre le déterminant de l’égalité.

2. a) Prendre l’endomorphisme canoniquement associé à

A =
(

0 1
−1 0

)
par exemple.

b) Prendre l’endomorphisme canoniquement associé à

la matrice diagonale par blocs


A

A
. . .

A

.

36 ϕ est une symétrie.

4


