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Espaces Préhilbertiens Indications

1 Concernant la séparation, pour pouvoir dire que f est nulle
sur [−1 ,1] il y a un théorème à appliquer.

2 Symétrie, bilinéarité et positivité ne posent pas problème.

Séparation : si (f | f ) = 0 alors f (0) = 0 et
∫ 1

0
(f ′)2 = 0.

Pour pouvoir dire que f ′ est nulle sur [0 ,1] il y a un théo-
rème à appliquer. Reste ensuite à montrer que f est nulle.

3 Appliquer l’inégalité de Cauchy-Schwarz dans C ([0 ,1],R) :(∫ 1

0
gh

)2
≤

∫ 1

0
g2 ×

∫ 1

0
h2

en choisissant judicieusement les fonctions g et h.

4 Appliquer l’inégalité de Cauchy-Schwarz dans Rn+1 :( n∑
k=0

xkyk

)2
≤

n∑
k=0

x2
k ×

n∑
k=0

y2
k

en choisissant judicieusement les réels xk = et yk .

5 Appliquer l’inégalité de Cauchy-Schwarz dans C ([0 ,1],R)

6 Appliquer l’inégalité de Cauchy-Schwarz dans C ([a ,b],R)

7 Les hypothèses sur f permettent d’écrire : f (t) =
∫ t

0
f ′(s)ds.

En utilisant l’inégalité de Cauchy-Schwarz : f 2(t) ≤ t

∫ 1

0
f ′2.

On conclut par croissance de l’intégrale.

8 1. Par bilinéarité : ∥
n∑

k=1

λkek ∥2 =
n∑
i=1

n∑
j=1

λiλj

(
ei | ej

)
En appliquant judicieusement l’inégalité de Cauchy-
Schwarz dans Rn2

(pour majorer les sommes-doubles)
n∑
i=1

n∑
j=1

λiλj

(
ei | ej

)
≤

( n∑
i=1

n∑
j=1

λ2
i

∣∣∣∣(ei | ej)∣∣∣∣) 1
2

︸                     ︷︷                     ︸
=
( n∑
i=1

λ2
i si

)1/2

( n∑
i=1

n∑
j=1

λ2
j

∣∣∣∣(ei | ej)∣∣∣∣) 1
2

︸                     ︷︷                     ︸
=
( n∑
j=1

λ2
j sj

)1/2

2. a) Ecrire
n∑

k=1

λk (x | ek) sous la forme (x | •)

Appliquer ensuite l’inégalité de Cauchy Schwarz avec
le produit scalaire (· | ·) puis la question 1..

b) Prendre λk = (x|ek )
sk

dans 2a).

9 Par bilinéarité : N = ∥
n∑
i=1

Xiei ∥2 =
n∑
i=1

n∑
j=1

XiXj

(
ei | ej

)
Utiliser ensuite la linéarité de l’espérance puis calculer
E(XiXj ) en distinguant les indices i , j et les indices i = j.

10 1. Appliquer ∥x ∥2 =
n∑

k=1

(x | ek)2 avec x = ei .

2. Il suffit de montrer que (e1, . . . , en) est génératrice de E
(elle est déjà libre). Poser F = Vect(e1, . . . , en) et montrer
que F⊥ = {0} puis justifier en quoi ceci assure que F = E.

11 a) Utiliser : ∥ei − ej ∥2 = ∥ei ∥2 + ∥ej ∥2 − 2
(
ei | ej

)
b) La famille est de cardinal n = dimE donc la liberté suffit.

Etant donnés α1, . . . ,αn tels que α1e1 + · · ·+αnen = 0, on

peut former un système de n équations en considérant
les produits scalaires avec e1, . . . , en i.e. en écrivant

∀j ∈ ⟦1 ,n⟧, 0 =

 n∑
i=1

αiei | ej

 =
n∑
i=1

αi

(
ei | ej

)
︸ ︷︷ ︸
1
2 si i , j
1si i = j

En sommant les n équations on obtient α1 + · · ·+αn = 0.
En utilisant alors cette dernière égalité dans chaque équa-
tion on obtient α1 = 0, α2 = 0 . . ., αn = 0.

12 1. Développer ∥x ∥2 et ∥y ∥2 par bilinéarité

2. La question1. assure que si
p−1∑
i=1

λiei = 0 alors
p−1∑
i=1

|λi |ei = 0

Prendre le produit scalaire avec ep.

13 • Si u et v sont orthogonaux utiliser l’égalité de Pythagore

• Pour la réciproque, deux possibilités (au moins) :
• Option 1. Par contraposition, supposant que (u | v) , 0,

on peut trouver t tel que ∥u + tv ∥ < ∥u ∥.
Pour cela, chercher t tel que u+ tv⊥v puis utiliser l’éga-
lité de Pythagore (si la projection sur un hyperplan a
déjà été traitée en cours, il suffit de prendre t tel que
u + tv = pH (u) où H = Vect(v)⊥).

• Option 2. Supposer : ∀t ∈R, ∥u + tv ∥2 ≥ ∥u ∥2.
Développer avec l’identité remarquable, simplifier puis
diviser l’inégalité par t > 0 ou par t < 0 puis faire enfin
tendre t vers 0+ et vers 0−.

14 • i) =⇒ ii) Pour tous i, j ∈ ⟦1 ,n⟧ : ai,j =
SF 6

(
f (ej ) | ei

)
.

• ii) =⇒ i) Le produit scalaire s’exprime matriciellement :
si X est la colonne des coordonnées de x dans B et Y celle
de y alors : (f (x) | y) = (AX)⊤Y .
Utiliser ii) pour montrer que (f (x) | y) = (x | f (y)).

15 En notant B′ = (b′1, . . . , b
′
n) et en utilisant :

• Le fait que ai,j est la ie coordonnée de b′j dans B

• Le formulaire donnant l’expression du produit scalaire
en base orthonormée

on obtient : (A⊤A)i,j =
(
b′i | b

′
j

)
16 1. Calculer ∥f (ei)∥2 − ∥f (ej )∥2 par identité remarquable.

2. Ecrire x =
n∑
i=1

xiei puis exprimer ∥f (x)∥2.

17 1. Utiliser :

(f (x) | f (y)) =
−1
2

(
∥f (x)− f (y)∥2 − ∥f (x)∥2 − ∥f (y)∥2

)
2. a) Développer et utiliser 1.

b) Montrer que (δ | δ) = 0.

18 1. Introduire une base orthonormée (e1, . . . , en) de E.

Dans une telle base montrer que la matrice A de f a pour
coefficients ai,j =

(
f (ej ) | ei

)
.

Ainsi l’hypothèse est : 0 = trf =
n∑
i=1

(f (ei) | ei)

• Si n = 1, c’est le résultat voulu



• Si n ≥ 2, il existe i , j tels que (f (ei | ei) ≥ 0 et(
f (ej ) | ej

)
≤ 0. On peut utiliser ces deux vecteurs pour

construire un vecteur x tel que : (f (x) | x) = 0.
Poser xt = (1 − t)ei + tej pour tout t ∈ [0 ,1] de sorte
que x0 = ei et x1 = ej et justifier que la fonction
ϕ : t 7→ (f (xt) | xt) de [0 ,1] dans R s’annule.

2. Pour l’hérédité si le résultat est vrai en dimension n, en
dimension n+ 1 utiliser la question 1 pour construire un
vecteur e1 de norme 1 tel que (f (e1) | e1) = 0. Compléter
(e1) avec une famille de n vecteurs B′ = (e2, . . . , en) en
une base orthonormée (e1, e2, . . . , en+1) de E.
La matrice A de f dans cette base est de la forme

A =

0 . . .
... A′

 où trA′ = 0

Il suffit d’appliquer l’h.r. à f ′ tel que MatB′ f ′ = A′

19 1. Utiliser : 0 = (f (x+ y) | x+ y).

2. Procéder par inclusion-dimension.

20 a) Fait en cours (partie II)

b) Procéder par double inclusion.

• Fixer x ∈ F⊥ ∩G⊥. Montrer que x ∈ (F +G)⊥ revient à
montrer : ∀z ∈ F +G, (x | z) = 0

• Fixer x ∈ (F +G)⊥.
Il s’agit de montrer que x ∈ F⊥ et que x ∈ G⊥.
Montrer que x ∈ F⊥ revient à montrer :

∀a ∈ F, (x | a) = 0

c) Appliquer b) à F⊥ et G⊥ puis utiliser a).

21 1. Symétrie, bilinéarité et positivité ne posent pas pro-

blème. Pour la séparation : il y a deux théorèmes à utili-
ser (l’un sur les intégrales, l’autre sur les polynômes).

2. Appliquer la méthode standard du savoir-faire SF 7

Pour P = aX2 + bX + c ∈R2[X] :

P ∈
(
R1[X]

)⊥
⇔

(P | 1) = 0
(P | X) = 0

Calculer ensuite les deux produits scalaires en fonction
de a, b et c à l’aide de l’expression de (P |Q) donnée par
l’énoncé. On trouve(

R1[X]
)⊥

= Vect
(
−3

2
X2 +X

)
= Vect

(
−3X2 + 2X

)
3. P3 = −3X2 + 2X est orthogonal à tous les vecteurs de
R1[X]. Il suffit de trouver une base orthogonale (P1, P2)
de R1[X] : (P1, P2, P3) sera alors une base orthogonale de
R2[X]. Construire (P1, P2) de « proche en proche » :

• Choisir arbtrairement P1 ∈R1[X] non nul (et simple !)
• Trouver ensuite P2 ∈R1[X] tel que 0 = (P1 | P2).

22 1.

2. a) Utiliser la caractérisation de la multiplicité des racines
des polynômes à l’aide des dérivées.

b) Effectuer une succession d’intégration par parties en
utilisant la question précédente pour le crochet.

3. Avec la3b), montrer que (Pk | Pi) = 0 lorsque 0 ≤ i < k ≤ n
(observer le degré de Pi).

4. Il suffit de prendre la famille des
Pk
∥Pk ∥

donc de calcu-

ler ∥Pk ∥ pour tout k ∈N. Pour cela, utiliser la 3a) avec

Q = Pk en remarquant que P
(k)
k est une constante. On

obtient ∥Pk ∥2 = (−1)k(2k)!
∫ 1

−1
(t − 1)k(t + 1)k dt.

On peut calculer l’intégrale en effectuant une succession
d’intégration par parties.

On obtient : ∥P ∥2k =
(k!)2

2k + 1
22k+1.

23 Appliquer la méthode standard du savoir-faire SF 7 :

• Ecrire F sous la forme F = Vect(I2,B) avec B = ....

• Pour M =
(
a c
b d

)
∈M2(R) : M ∈ F⊥⇔

 (M | I2) = 0
(M | B) = 0

24 1. Déjà fait en exercice dans le chapitre Dimension.

Fixer M ∈Mn(R) et montrer par analyse-synthèse qu’il

existe un unique couple (S,A) tel que


S +A = M

S ∈Sn

A ∈An

On obtient S =
M +M⊤

2
et A =

M −M⊤

2
2. Raisonner par inclusion-dimension :

• Montrer que Sn ⊂ (An)⊥. Pour cela fixer S ∈ Sn. Il
s’agit de montrer que S ∈ (An)⊥ i.e. que :

∀A ∈An, (S | A) = 0

• Montrer que dimAn = dim
(
(Sn)⊥

)
3. Utiliser : A− S =

(
A−As

)
︸   ︷︷   ︸
∈An=(Sn)⊥

+
(
As − S

)
︸   ︷︷   ︸
∈Sn

et Pythagore.

25 • Ecrire F sous forme de Vect (résoudre l’équa diff), on

trouve F = Vect(f1, f2) où f1 : t 7→ et et f2 : t 7→ e−t .

• Ensuite, pour toute f ∈ E : f ∈ F⊥⇔

 (f | f1) = 0
(f | f2) = 0

On obtient : (f | f1) = ef (1)−f (0) et (f | f2) = −1
e f (1)+f (0)

En résolvant le système : f ∈ F⊥⇔ f (0) = f (1) = 0.

26 Il suffit de montrer que H⊥ ⊂ {0}.
Fixer g ∈H⊥ et utiliser la fonction f : t 7→ tg(t).

27 Transformer (1,X,X2) en une famille orthonormée
(P0, P1, P2) par l’algorithme de Gram-Schmidt.

Réponses à trouver : 1√
3
, X−1√

2
et (X2 − 2X + 1

3 )
√

3
2

28 On note B = (b1,b2,b3) la base canonique de R3. Il s’agit
de calculer : pF(b1), pF(b2) et pF(b3).

• Méthode 1 On trouve une base orthonormée (e1, e2) de F
puis on utilise :
(⋆) pF(u) = (u | e1)e1 + (u | e2)e2 pour u = b1, b2 puis b3.
Pour trouver (e1, e2) on construit d’abord une famille
(u1,u2) orthogonale. On prend (par exemple) u1 = (1,0,1),
qui appartient à F. On cherche ensuite u2 = (x,y,z) tel

que :

u2 ∈ F
(u2 | u1) = 0

. Une base orthonormée de F est

(e1, e2) où e1 =
u1

∥u1 ∥
et e2 =

u2

∥u2 ∥
• Méthode 2 On utilise le fait que Fest un hyperplan de R3.

On trouve un vecteur normal a à F puis

(⋆⋆) pF(u) = u − (u | a)
∥a∥2

a pour u = b1, b2 puis b3.

2



29 On peut ici appliquer les méthodes 1 et 3 de SF 9 :

• Avec la méthode 1. Utiliser une formule de trigo pour écrire
sin2 = f + g avec f ∈ F et g ∈ F⊥ d’où pF(u) = f

• Avec la méthode 3. On trouve : (f1 | f2) = 0.
La famille (f1, f2) est donc une base orthogonale de F.
Une base orthonormée est (e1, e2) où e1 = f1

∥f1 ∥
et e2 = f2

∥f2 ∥
.

Pour calculer ∥f1 ∥ : ∥f1 ∥2 = (f1 | f1) =
∫ 2π

0
f 2

1 (t)dt

On trouve : ∥f1 ∥ = ∥f2 ∥ = π donc e1 = f1√
π

et e2 = f2√
π

.
Muni d’une base orthonormée :
(⋆) pF(u) = (u | e1)e1+(u | e2)e2 =

1
π

(u | f1)f1+
1
π

(u | f2)f2

Reste à calculer (u | f1) et (u | f1). Ce sont deux intégrales :
la première est simple, linéariser pour la deuxième.

30 N.B. Il s’agit de la suite de l’exercice 23 dont on peut utiliser le

résultat : F⊥ = Vect(U,V ) où U =
(
−1 0
0 1

)
et V =

(
0 1
1 0

)
.

On peut ici appliquer les méthodes 1 et 3 de SF 9 :

• Avec la méthode 1. On devine la décomposition selon F⊕F⊥.

• Avec la méthode 3. Montrer que la base (U,V ) de F⊥ est
orthogonale Une base orthonormée est (E1,E2) où E1 = U

∥U ∥
et E2 = V

∥V ∥ . On trouve ∥U ∥ = ∥V ∥ =
√

2 donc

pF⊥(J) = (J | E1)E1 + (J | E2)E2 =
1
2

(J |U )U +
1
2

(J | V )V

Reste alors à calculer (J |U ) et (J | V ).

31 Les questions reposent sur les deux conditions :
➀ pF(x) ∈ F et ➁ x − pF(x) ∈ F⊥
1. Ecrire x = pF(x) + (x − pF(x)) et utiliser le théorème de

Pythagore pour calculer ∥x ∥2.
2. Poser G = {x ∈ F | ∥pF(x)∥ = ∥x ∥} et montrer que F = G

par double-inclusion.
3. Exploiter les conditions ➀ et ➁, par exemple

(pF(x) | y) =
y=pF (y)+y−pF (y)

(pF(x) | pF(y))+(pF(x) | y − pF(y))

32 Introduire une base orthonormée (b1, . . . , bk) de F. La for-
mule donnant le projeté dans une base orthonormée puis
celle y donnant la norme permettent d’écrire :

∥pF(ei)∥2 =
k∑

j=1

(
ei | bj

)2
. Ceci exprime

n∑
i=1

∥pF(ei)∥2 comme

une somme-double. Intervertir les
∑

et noter que la somme
intérieure vaut ∥bj ∥2

33

Dans M2(R), le produit scalaire se calcule simplement, si

A =
(
a c
b d

)
et A′ =

(
a′ c′

b′ d′

)
,

(A | A′) = aa′ + bb′ + cc′ + dd′

∥A∥2 = a2 + b2 + c2 + d2

Rappel : produit scalaire matriciel

Plusieurs méthodes sont possibles :

• d(A,F) = ∥A− pF(A)∥ donc il s’agit de déterminer pF(A).
Ici la famille (E1,1,E1,2,E2,2) est une b.o.n de F donc :

pF(A) =
(
A | E1,1

)
E1,1 +

(
A | E1,2

)
E1,2 +

(
A | E2,2

)
E2,2

Le calcul des produits scalaires donne pF(A) =
(
• •
• •

)
Puis on forme A− pF(A) =

(
• •
• •

)
et on calcule ∥A− pF(A)∥.

• On peut procéder différemment pour déterminer pF(A)
en devinant la décomposition de A = M +N selon F ⊕ F⊥.
Ensuite : d(A,F) = ∥A− pF(A)∥ = ∥N ∥

• F est un hyperplan de M2(R) donc d(A,F) =
|(A | E)|
∥E ∥

où E est un vecteur normal à F.
Il s’agit donc d’abord de trouver un tel vecteur normal i.e.
une matrice E orthogonale à toutes les matrices triangu-
laires supérieures.Ensuite on calcule (A | E) et ∥E ∥.

34 Par définition d(M,S ) = ∥M − pS (M)∥.
Il s’agit donc de déterminer pS (M). Ici on peut utiliser la
méthode 1 car on connaît la décomposition d’une matrice

dans S ⊕A c’est : M =
M +M⊤

2︸    ︷︷    ︸
S∈S

+
M −M⊤

2︸    ︷︷    ︸
A∈A =S ⊥

Cette décomposition assure (sans calcul) que pS (M) = S et :
d(M,S ) = ∥M − S ∥ = ∥A∥. Il suffit donc de calculer ∥A∥.

35

Dans cet exercice (P |Q) = P (0)Q(0) + P (1)Q(1) + P (2)Q(2)
et ∥P ∥2 = (P | P ) = P (0)2 + P (1)2 + P (2)2

Calcul des produits scalaires

On a : d(X2,R1[X]) = ∥X2 − P ∥, où P = p
R1[X](X2).

•Calcul du projeté orthogonal de X2 sur F =R1[X].
Utiliser la méthode 2 du savoir-faire SF 9

• P = p
R1[X](X2) ∈R1[X] donc il s’écrit : P = aX + b pour

certains a,b ∈R à trouver

• X2 − P ∈
(
R1[X]

)⊥
donc P vérifie :

(
X2 − P | 1

)
= 0(

X2 − P | X
)

= 0
i.e. : (⋆)

(P | 1) =
(
X2 | 1

)
(P | X) =

(
X2 | X

)
Le calcul des quatre produits scalaire donne un système
de deux équations sur a et b.

•Calcul de la distance de X2 à R1[X]. Calculer le polynôme
Q = X2 − P puis d(X2,R1[X]) = ∥X2 − P ∥ = ∥Q ∥

36

Ici un calcul de produit scalaire est un calcul d’intégrale :

(f | g) =
∫ 1

0
f (t)g(t)dt et ∥f ∥2 = (f | f ) =

∫ 1

0
f (t)2 dt

Calcul des produits scalaires

1. Pour calculer g = pF(f ), utiliser la méthode 2 de SF 9 :
i) g ∈ F donc g = af1 + bf2 pour a,b ∈R à trouver.
ii) f − g ∈ F⊥

donc
{

(f − g | f1) = 0

(f − g | f2) = 0
i.e. (⋆) :

{
(g | f1) = (f | f1)

(g | f2) = (f | f2)
.

On trouve :

(f | f1) = e−1 (f | f2) =
IPP

1 (g | f1) = a+
b

2
(g | f2) =

a

2
+
b

3
Résoudre enfin le sytème.
On trouve a = 4e − 10 et b = 18− 6e.

2. Remarque que I(a,b) = ∥f − (af1 − bf2)∥2. Par le théo-
rème d’approximation I(a,b) est minimale pour af1 −
bf2 = pF(f ) donc pour les valeurs trouvées à la 1..

3. Il s’agit de calculer l’intégrale I(a,b) =
∫ 1

0
(et − at − b)2 dt

On peut faire un calcul « brutal » en développant le carré

3



puis en calculant 6 intégrales.
On peut aussi être astucieux en utilisant

I(a,b) = ∥f − pF(f )∥ = (f − pF(f ) | f − pF(f ))

=(f | f − pF(f ))− (pF(f ) | f − pF(f ))

Nul

=(f | f − pF(f ))− 0

=(f | f − af1 − af2)
Cela donne

I(a,b) =
∫ 1

0
et(et−a−bt) =

∫ 1

0
e2t dt−a

∫ 1

0
et dt−b

∫ 1

0
tet dt

et le calcul est plus simple.
On trouve après calcul des trois intégrales :

I(a,b) =
e2 − 1

2
− a(e − 1)− b

(où a et b sont les valeurs trouvées à la question 1).

37 Il s’agit d’interpréter le problème comme un problème de
distance 1. Concrètement il y a trois choses à faire :

• Définir l’espace vectoriel en jeu : l’énoncé propose E =
Rn[X].

• Définir un produit scalaire sur E pour lequel S(a,b)
s’écrira comme une norme. On peut prendre (P |Q) =
n∑

k=0

P (k)Q(k) de sorte que ∥P −Q ∥2 =
n∑

k=0

(
P (k)−Q(k)

)2
.

• Définir le sev F sur lequel on projette. Avec les définitions
précédentes S(a,b) = ∥X2 − (aX + b)︸   ︷︷   ︸

décrit R1[X]

∥2

Donc on prend F =R1[X].

Par le théorème d’approximation, S(a,b) = ∥X2 − (aX + b)∥2
est minimale pour aX + b = pF(X2).
Utiliser la méthode 2 du savoir-faire SF 9 pour calculer
pF(X2) On trouve a = n et b = −n(n−1)

6 .

38 Il s’agit d’interpréter le problème comme un problème de
distance Concrètement il y a trois choses à faire :

• Définir l’espace vectoriel en jeu : ici l’énoncé propose
E = C

(
[0 ,2π],R

)
.

• Définir un produit scalaire sur E pour lequel I(a,b) s’écrira
comme une norme. Ici on prend le produit scalaire intégral

(f | g) =
∫ 2π

0
f g de sorte que ∥f − g ∥2 =

∫ 2π

0
(f − g)2.

• Définir le sev F sur lequel on projette. En notant f la fonc-
tion t 7→ t et f1 la fonction t 7→ sin t et f2 : t 7→ cos t

I(a,b) = ∥f − (af1 + bf2)︸      ︷︷      ︸
décrit Vect(f1, f2)

∥2

Donc on prend F = Vect(f1, f2).

Par le théorème d’approximation I(a,b) = ∥f − (asin+bcos)∥2
est minimale lorsque asin+bcos = pF(f ). Calculer pF(f )
avec la méthode 3 de SF 9 : on trouve a = −2 et b = 0.

39

Ici :(A | B) = tr(A⊤B) et ∥A∥2 = tr(A⊤A)

Produit scalaire canonique sur Mn(R)

H est le noyau de la forme linéaire M 7→ trM.
Un vecteur normal se devine sur l’équation de H en écri-
vant : H = {M ∈Mn(R) | (• |M) = 0} =

Utiliser la formule : d(J,H) =
|(J | •)|
∥•∥

Réponse à trouver : d(J,H) =
√
n.

40 a) ∥A−λIn ∥ lorsque λIn = pF(A) où F = Vect(In).

Il s’agit de calculer le projeté de A sur F.
On peut utiliser la méthode 2 :

• pF(A) = λIn ∈ F a déjà été traduit.
• (A−λIn | In) = 0 donne avec la linéarité du produit

scalaire : λ = (A|In)
(In |In) qui donne le résultat demandé en

calculant les deux produits scalaires.

b) Il s’agit de calculer ∥A−λIn ∥2.
Pour cela on peut utiliser la ruse usuelle :
∥A−λIn ∥2 = (A−λIn | A−λIn) = (A−λIn | A)−(A−λIn | λIn)︸           ︷︷           ︸

=?

1. c’est à dire arriver à écrire S(a,b) sous la forme ∥x − y ∥ pour un certain vecteur x d’un e.v. E à trouver et y qui décrit un certain sous-ev de E.

4


