
31
Espaces Préhilbertiens Exercices
■ Produit scalaire

1 SF 1 Montrer que la relation (f | g) =
∫ 1

−1
f (t)g(t)(1− t2)dt

définit un produit scalaire sur C ([−1 ,1],R)

2 SF 1 Montrer que : (f | g) = f (0)g(0) +
∫ 1

0
f ′(t)g ′(t)dt

définit un produit scalaire sur C 1([0 ,1],R).

■ Inégalité de Cauchy-Schwarz

3 SF 4 Soit f ∈ C
(
[0 ,1],R+

)
. Pour tout n ∈ N, on pose

In =
∫ 1

0
tnf (t)dt. Montrer : ∀n,p ∈N, I2

n+p ≤ I2nI2p

4 SF 4 Montrer que pour tout n ∈N,
n∑

k=0

√(
n

k

)
≤

√
2n(n+ 1).

5 Ex. 79.3, banque INP SF 4

Montrer que :
∫ 1

0

√
xe−x dx ≤ 1

2

√
1− e−2.

6 SF 4 Soit f : [a ,b]→R de classe C 1.

Montrer :
f (b)2 − f (a)2

2
≤

√∫ b

a
f (t)2 dt ×

√∫ b

a
f ′(t)2 dt

7 SF 4 Soit f : [0 ,1] → R de classe C 1 telle que f (0) = 0.

Montrer :
∫ 1

0
f (t)2 dt ≤ 1

2

∫ 1

0
f ′(t)2 dt.

■ Calculs avec les produits scalaires

8 SF 2 SF 4 Soit E un espace préhilbertien x ∈ E et e1, . . . , en ∈

E, non nuls. On pose sk =
n∑
i=1

|(ek | ei)| pour tout k ∈ ⟦0 ,n⟧.

1. Soit λ1, . . . ,λn ∈R. Montrer :
∥∥∥∥ n∑
k=1

λkek

∥∥∥∥2
≤

n∑
k=1

λ2
ksk

Indication : Appliquer l’inégalité de Cauchy Schwarz dans Rn
2

.

2. a) En déduire que pour tous λ1, . . . ,λn ∈R :
n∑

k=1

λk (x | ek) ≤ ∥x ∥
 n∑
k=1

λ2
ksk

1/2

b) En déduire :
n∑

k=1

(x | ek)2

sk
≤ ∥x ∥2

9 SF 2 Soit E un espace préhilbertien et e1, . . . , en ∈ E, uni-
taires. Soient X1, . . . ,Xn des variables aléatoires définies sur
un même espace probabilisé, indépendantes et de même loi
définie pour tout k ∈ ⟦1 ,n⟧ par : P (Xk = 1) = P (Xk = −1) = 1

2 .

On pose : N =
∥∥∥∥ n∑
i=1

Xiei

∥∥∥∥2
. Montrer que : E(N ) = n.

10 SF 5 Soit E un espace préhilbertien et e1, . . . , en des vecteurs

unitaires de E vérifiant : ∀x ∈ E, ∥x ∥2 =
n∑

k=1

(x | ek)2

1. Montrer que (e1, . . . , en) est orthonormée.
2. Montrer que (e1, . . . , en) est une base de E. Attention au

départ rien n’indique que n est la dimension de E.

11 SF 3 Soit n ≥ 2. Soit E un espace euclidien de dimension
n et e1, . . . , en des vecteurs unitaires de E. On suppose que
pour tous i, j ∈ ⟦1 ,n⟧ tels que i , j : ∥ei − ej ∥ = 1.

a) Montrer que
(
ei | ej

)
=

1
2

pour tous i, j ∈ ⟦1 ,n⟧ distincts

b) Montrer que (e1, . . . , en) est une base de E.

12 SF 2 Soit E un espace euclidien et e1, . . . , ep ∈ E vérifiant,

pour tous i, j ∈ ⟦1 ,n⟧ tels que i , j :
(
ei | ej

)
< 0.

1. Soient x1, . . . ,xp ∈R. On pose x =
p∑

k=1

xkek et y =
p∑

k=1

|xk |ek
Montrer que : ∥y ∥ ≤ ∥x ∥.

2. Montrer que (e1, . . . , ep−1) est libre.
Que peut-on en déduire sur la dimension de E ?

13 SF 3 Montrer que deux vecteurs u et v d’un espace préhil-
bertien E sont orthogonaux ssi : ∀t ∈R, ∥u ∥ ≤ ∥u + tv ∥.

14 SF 6 Soient E un espace euclidien muni d’une base ortho-
normée B = (e1, . . . , en) et f ∈L (E). On pose : A = MatBf .
Montrer l’équivalence entre :
i) ∀x,y ∈ E, (f (x) | y) = (x | f (y)) ii) A est symétrique

15 SF 6 Soient E un espace euclidien de dimension n ∈ N∗
et B et B′ deux bases orthonormées de E. On note A la
matrice de passage de B à B′ . Montrer que : A−1 = A⊤.

16 SF 2 SF 3 Soit E un espace euclidien et f ∈L (E) tel que :

∀x,y ∈ E, (x | y) = 0 =⇒
(
f (x) | f (y)

)
= 0

1. Soient (e1, . . . , en) une base orthonormée de E.
Montrer : ∀i ∈ ⟦1 ,n⟧, ∥f (ei)∥ = ∥f (ej )∥

2. En déduire qu’il existe une constante c ∈ R+ telle que
pour tout x ∈ E : ∥f (x)∥ = c ∥x ∥.

17 SF 3 Soit E un espace euclidien et f : E→ E telle que :
f (0E) = 0E et ∀x,y ∈ E, ∥f (x)− f (y)∥ = ∥x − y ∥

1. Montrer que f conserve le produit scalaire i.e. :
∀x,y ∈ E, (f (x) | f (y)) = (x | y)

2. a) Soient x,y ∈ E et λ,µ ∈R. On pose
δ = f (λx+µy)−λf (x)−µf (y)

Montrer que pour tout z ∈ E : (δ | f (z)) = 0.
b) En déduire que f est linéaire.

18 SF 6 Soit E un espace euclidien de dimension n et f un
endomorphisme de E tel que tr(f ) = 0.
1. Montrer qu’il existe x ∈ E non nul tel que (f (x) | x) = 0.
2. En déduire qu’il existe une base orthonormée de E dans

laquelle la matrice de f à tous ses éléments diagonaux
nuls. Indication : Procéder par récurrence sur n.

■ Orthogonal d’un sous-espace

19 SF 8 Soit E un espace euclidien et f ∈L (E) tel que
∀x ∈ E, (f (x) | x) = 0

1. Etablir : ∀x,y ∈ E, (f (x) | y) = − (x | f (y)).
2. Montrer que Imf = (Kerf )⊥.

20 Ex. 77, banque INP SF 8 Soient F et G deux sous-espaces
vectoriel d’un espace euclidien E.
a) Montrer que : (F⊥)⊥ = F.
b) Démontrer : (F +G)⊥ = F⊥ ∩G⊥.
c) En déduire que : (F ∩G)⊥ = F⊥ +G⊥.



21 SF 1 SF 5 SF 7 Pour tous P ,Q ∈R2[X], on pose

(P |Q) = P (0)Q(0) +
∫ 1

0
P ′(t)Q′(t)(1− t)dt

1. Montrer que (· | ·) est un produit scalaire sur R2[X].
2. Déterminer une base de R1[X]⊥.
3. Déterminer une base orthogonale de R2[X] pour ce pro-

duit scalaire. Comment obtenir une base orthonormale ?

22 SF 1 SF 5 Soit n ∈N. On pose Ak = (X2 − 1)k et Pk = A
(k)
k

pour tout k ∈N
1. Démontrer que la relation : (P |Q) =

∫ 1

−1
P (t)Q(t)dt

définit un produit scalaire sur Rn[X].
2. Soit k ∈N.

a) Montrer : ∀i ∈ ⟦0 , k − 1⟧, A
(i)
k (−1) = A

(i)
k (1) = 0

b) Etablir : ∀Q ∈Rn[X], (Pk |Q) = (−1)k
∫ 1

−1
Ak(t)Q(k)(t)dt.

3. Montrer que (P0, . . . , Pn) est orthogonale.
4. Déterminer une base orthonormée de Rn[X].

23 Ex. 81.1, banque INP SF 7 Dans M2(R) muni du produit

scalaire (A,B) 7→ tr(A⊤B) on pose : F =
{(

a −b
b a

)
, a,b ∈R

}
.

Déterminer une base de F⊥.

24 Ex. 92.2, banque INP SF 8 On munit Mn(R) du produit
scalaire canonique.
1. Montrer que les sous-espaces Sn (matrices symétriques)

et An (matrices antisymétriques) sont suppléméntaires.

2. Montrer que An =
(
Sn

)⊥
.

3. Soit A ∈Mn(R). On pose As = 1
2

(
A+A⊤

)
.

Montrer que pour toute S ∈Sn : ∥A− S ∥ ≥ ∥A−As ∥.

25 SF 7 On munit E = C 2([0 ,1],R) du produit scalaire défini

par la relation : (f | g) =
∫ 1

0

(
f (t)g(t) + f ′(t)g ′(t)

)
dt.

On pose : F = {f ∈ E | f ′′ = f }.
Démontrer que : F⊥ = {f ∈ E | f (0) = f (1) = 0}.

26 On pose E = C
(
[0 ,1],R

)
et on munit E du produit scalaire

défini par la relation : (f | g) =
∫ 1

0
f (t)g(t)dt.

On pose H = {f ∈ E | f (0) = 0}. Montrer que H⊥ = {0}.

■ Orthonormalisation de Schmidt

27 On munit R2[X] du produit scalaire défini par la relation
(P |Q) = P (0)Q(0) + P (1)Q(1) + P (2)Q(2)

Avec l’algorithme de Schmidt, orthonormaliser la base ca-
nonique (1,X,X2).

■ Projection orthogonale

28 SF 9 SF 10 Dans R3 muni de sa structure euclidienne cano-

nique, on pose : F =
{
(x,y,z) ∈R3 | x+ y − z=0

}
.

Déterminer la matrice de pF dans la base canonique.

29 Ex. 80, banque INP SF 9 On munit C
(
[0 ,2π],R

)
du produit

scalaire défini par la relation : (f | g) =
∫ 2π

0
f (t)g(t)dt

On note F le sous-espace engendré par les deux fonctions
f1 : x 7→ cosx et f2 : x 7→ cos(2x).
Déterminer le projeté orthogonal sur F de u : x 7→ sin2(x).

30 Ex. 81.2, banque INP SF 9 On munit M2(R) du produit sca-

laire (A,B) 7→ tr(A⊤B) et on pose : F =
{(

a −b
b a

)
, a,b ∈R

}
.

Trouver le projeté orthogonal de J =
(

1 1
1 1

)
sur F⊥.

31 Soient E un espace euclidien, F un sous-espace vectoriel de
E et pF le projecteur orthogonal sur F.
1. Montrer que pour tout x ∈ E : ∥pF(x)∥ ≤ ∥x ∥.
2. Montrer que : F = {x ∈ E | ∥pF(x)∥ = ∥x ∥}.
3. Montrer que pour tous x,y ∈ E, (pF(x) | y) = (x | pF(y))

32 SF 6 SF 9 Soit E un espace euclidien de dimension n muni
d’une base orthonormée (e1, . . . , en) et F un sous-espace vec-

toriel de E de dimension k. Montrer que
n∑
i=1

∥pF(ei)∥2 = k.

■ Distance à un sous-espace

33 Ex. 82, banque INP SF 9 SF 11 SF 12 On munit M2(R) du

produit scalaire (A,B) 7→ tr(A⊤B) et on pose : A =
(

1 0
−1 2

)
.

Calculer la distance de A au sous-espace vectoriel F des
matrices triangulaires supérieures.

34 SF 9 SF 11 On munit M3(R) du produit scalaire canonique

et on pose : M =

1 2 3
0 1 2
1 2 3

 . Calculer la distance de M

au sous-espace vectoriel S des matrices symétriques.

35 SF 9 SF 11 On munit R2[X] du produit scalaire
(P ,Q) 7→ P (0)Q(0) + P (1)Q(1) + P (2)Q(2)

Calculer la distance de X2 à R1[X].

36 SF 9 SF 11 On munit C ([0 ,1],R) du produit scalaire :

(f ,g) 7→
∫ 1

0
f (t)g(t)dt

On pose F = Vect(f1, f2) où : f1 : t 7→ 1 et f2 : t 7→ t
1. Déterminer le projeté orthogonal de f : t 7→ et sur F.
2. En déduire les réels a,b qui rendent minimale l’intégrale

I(a,b) =
∫ 1

0
(et − at − b)2 dt

3. Calculer la valeur du minimum obtenu.

37 SF 9 SF 11 En introduisant un produit scalaire judicieux
sur Rn[X], trouver les réels a,b qui rendent minimale la

somme : S(a,b) =
n∑

k=0

(
k2 − ak − b

)2
.

On pourra librement utiliser la formule :
n∑

k=0

k3 =
(n(n+ 1)

2

)2
.

38 SF 9 SF 11 Trouver les réels a,b qui minimisent l’intégrale

I(a,b) =
∫ 2π

0

(
t − asin t − bcos t

)2
dt

Indication : Interpréter I(a,b) comme une distance sur C ([0 ,2π],R).

39 SF 11 On munit Mn(R) du produit scalaire canonique et
on pose H = {M ∈Mn(R) | tr(M) = 0}. Calculer la distance
à H de la matrice J dont tous les coefficients valent 1

40 SF 9 SF 11 On munit Mn(R) du produit scalaire canonique.
Soit A ∈Mn(R). Montrer que ∥A−λIn ∥ est minimale pour

λ =
trA
n

et que ce minimum vaut :

√
∥A∥2 − (trA)2

n
.

2


