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Familles de variables aléatoires Indications

1 • On cherche : pn = P (X = Y ) où

• X est le nombre de pile du premier joueur.
• Y est le nombre de pile du second joueur.

• X et Y sont indépendantes et suivent une loi usuelle

• Calcul de P (X = Y )

• Très faux : P (X = Y )�Z=
n∑

k=0

(n
Y

)(1
2

)n
est très faux

• Très faux aussi : P (X = Y )�Z=
n∑

k=0

P (X = k) « parce que » Y

est à valeurs dans ⟦0 ,n⟧
• La bonne écriture Appliquer la formule des probabilités

totales pour « geler » la variable Y

P (X = Y ) =
n∑

k=0

P{Y=k}(X=Y )P (Y =k) =
n∑

k=0

P{Y=k}(X=k)P (Y =k)

Il reste à :

• Remplacer P (Y = k) qui est connue
• Calculer P{Y=k}(X = k) (utiliser l’indépendance)

Technique à retenir : on « gèle » la variable Y

• Equivalent de pn : Utiliser la formule de Stirling.

2 Utiliser P (X , Y ) = 1− P (X = Y )
Ensuite calculer P (X = Y ) comme à l’exercice précédent en
« gelant » Y (ou X peu importe) à l’aide de la formule des
probabilité totales.

3 Noter A l’événement : « X1 × · · · ×Xn est pair »
Le produit est pair si l’un des Xi l’est : A est une réunion
mais elle n’est pas incompatible. Remarquer que A peut
s’écrire est l’événement : « Tous les Xi sont impairs. »
comme une intersection indépendante à l’aide des événe-
ments Ii : « Xi est impair » pour i ∈ ⟦1 ,n⟧
On peut donc calculer les P (Ii) puis P (A).

4 1. Chercher les couples (x,y) d’entiers tels que M2 = M.

On trouve deux couples solutions : (0,1) et (1,0).
2. On cherche P (A) où A est lévénement :

« M représente un projecteur non nul »
Avec la question 1 :
M2 = M ssi le couple (X,Y ) vaut (0,1) ou (1,0).
Traduire cette équivalence comme une égalité d’événe-

ments : A =
(
. . .

)
∪

(
. . .

)
Il reste ensuite à calculer P (A).

5 1. • Loi de R. Utiliser rgM = rg(C1, . . . ,Cn) où C1, . . . ,Cn

sont les colonnes de la matrice. Les colonnes de M
sont toutes proportionnelles à U :

• Ci = XiU pour tout i ∈ ⟦1 ,n⟧
• donc rgM vaut 0 (si tous les Xi sont nuls) ou 1 (si au

moins un des Xi n’est pas nul).

Dit autrement, R est à valeurs dans {0,1}. Reste à cal-
culer P (R = 0). Pour cela exprimer l’événement {R = 0}
comme une intersection des {Xi = 0}.

• Loi de S. Remarquer que S =
n∑

k=1

X2
k : il s’agit d’une

somme de n variables indépendantes, les X2
k , qui

suivent toutes une loi B(p). La loi de S est donc don-
née par un théorème du cours.

2. On cherche P (A) où A : « M représente un projecteur »
Ainsi on cherche P (M2 = M). Tout réside dans le calcul
de M2. Pour ce calcul noter que U⊤ ×U ∈R (matrice de
taille (1,1)). On obtient : M2 = SM.
Ainsi : A =

{
M2 = M

}
= {S = 1} ∪ {M = 0}.

6 1. Partir de E(X) =
N∑
k=0

kP (X = k) puis utiliser

P (X = k) = P (X > k − 1)− P (X > k)
2. a) Utiliser : {Mn ≤ k} = {X1 ≤ k} ∩ · · · ∩ {Xn ≤ k} (note 1)

puis utiliser l’indépendance des Xi .
b) Utiliser la question 1. et {Mn > k} = {Mn ≤ k}.

Réponse : E(Mn) = 6−
((1

6

)n
+
(2

6

)n
+
(3

6

)n
+
(4

6

)n
+
(5

6

)n)
7 a) Calculer P (Mn ≥ k) d’abord en utilisant :

{Mn ≥ k} = {X1 ≥ k} ∩ · · · ∩ {Xn ≥ k}
(note 2) puis en déduire P (Mn = k) (note 3)

b) Noter que : pn = P (Mn = 1).

Réponse : pn = 1−
(
1− 1

n

)n
.

8 Attention : on ne peut pas écrire E(SN ) =
N∑
k=1

E(Xk) car ici N

n’est pas un entier fixé mais une variable aléatoire.
Par définition de l’espérance : E(SN ) =

∑
k∈SN (Ω)

kP (SN = k)

Calculer P (SN = k) en « gelant » la variable N i.e. en appli-
quant la formule des probas totales avec le sce {N = ℓ}0≤ℓ≤n.
Cela permet d’écrire E(SN ) comme une somme double.
En permutant les symboles

∑
, constater que la somme inté-

rieure est E(Sℓ) = ℓE(X1).
Réponse : E(SN ) = E(X1)E(N ).
Pour calculer V (SN ) :

• Utiliser V (SN ) = E(S2
N )−E(SN )2

• Par la formule de transfert E(S2
N ) =

∑
k∈SN (Ω)

k2P (SN = k)

• Adapter le raisonnement qui a permis de calculer E(SN )
en utilisant notamment que E(S2

ℓ ) = V (Sℓ) +E(Sℓ)2.

• Réponse : V (SN ) = V (X1)E(N ) +E(X1)2V (N )

9 1. Montrer que {X ≤ k} ⊂ {Y ≤ k}.

2. Le résultat de la question 1 ne s’applique pas directe-
ment (ici il n’est pas possible de comparer X et Y ).
Construire X ′ et Y ′ comme des sommes de variables bi-
nomiales indépendantes. Etant données des variables
aléatoires X1, . . . ,Xn+1 indépendantes sur un même es-
pace probabilisé et toutes de lois B(p), poser

X ′ = X1 + · · ·+Xn et Y ′ = X1 + · · ·+Xn+1
On peut appliquer 1. à X ′ et Y ′

1. Le max est plus petit que k ssi tous sont plus petits que k
2. Le min est plus grand que k ssi tous sont plus grands que k
3. le min vaut k s’il est plus grand que k mais pas plus grand que k + 1



10 Supposer par l’absurde que c’est le cas. En notant X1 le
numéro du premier dé et X2 le numéro du second, l’hypo-
thèse assure que X1 et X2 sont indépendantes, toutes deux
à valeurs dans ⟦1 ,6⟧ et X1 +X2 ∼U

(
⟦2 ,12⟧

)
.

En posant : pi = P (X1 = i), qi = P (X2 = i)

puis : P =
6∑

i=1

piX
i−1 et Q =

6∑
i=1

qiX
i−1, observer que

le fait que X1 + X2 suive la loi U
(
⟦2 ,12⟧

)
se traduit par

l’égalité polynomiale : PQ =
1

11

10∑
k=0

Xk , polynôme dont on

connaît les racines. Obtenir une contradiction en montrant
que P (et Q) possède une racine réelle (observer le degré).

11 a) X1 suit une loi usuelle

b) V (X1) et V (X2) sont données par le cours. Calculer
V (X1 +X2) en notant que X1 +X2 +X3 est connue

c) Utiliser cov(X1,X2) = 1
2

(
V (X1 +X2)−V (X1)−V (X2)

)
.

12 1. • (X − 1)2 est à valeurs dans {0,1}.

• Il est plus simple de calculer P
(
(X−1)2 = 0

)
= P (X = 1)

Réponse finale : (X − 1)2 ∼B( 1
2 ) et (Y − 1)2 aussi

La loi de S s’obtient sans calcul en appliquant un résultat
du cours. Réponse : S ∼B(2, 1

2 )

2. a) Attention : E
(
S(T − 1)

)
= E(S)E(T − 1) est illégal sans

hypothèse d’indépendance entre S et T .
En revanche X et Y sont indépendantes et

S(T − 1) = (X − 1)3(Y − 1) + (X − 1)(Y − 1)3

Exploiter ensuite l’indépendance de X et Y la valeur
de E(Y −1) et E(X−1) Réponse finale : E(S(T −1)) = 0

b) Utilisez cov(S,T ) = E(ST )−E(S)E(T ) :

• E(S) s’obtient sans calcul (on connaît la loi de S)

• E(T ) = E
(
(X − 1)(Y − 1) + 1

)
• Pour E(ST ) écrire : ST = S(T − 1 + 1) = S(T − 1) + S

Réponse finale : cov(S,T ) = 0
c) Attention : cov(S,T ) = 0 n’assure pas que S et T sont

indépendantes

13 a) Z est à valeurs dans ⟦−n,n⟧.

Appliquer la formule des probabilités totales pour « ge-
ler » la variable Y

P (Z = k) = P (X = Y + k) =
n∑
i=0

P{Y=i}(X = i + k)P (Y = i)

Technique : on « gèle » la variable Y

Après quelques simplifications on obtient :

P (X = Y + k) =
1
2n

n∑
i=0

(
n

i

)
P (X = k + i)

Pour calculer P (X = k + i) distinguer des cas :

• Si k ≥ 0 Alors P (X = k + i) = 0 lorsque i > n − k donc
arrêter la somme à n− k

• Si k < 0 Alors P (X = k + i) = 0 lorsque i < −k donc
démarrer la somme à −k.

On peut aussi éviter la disjonction de cas en remarquant que
Z ∼ −Z ce qui permet de ne traiter que le cas où k ≥ 0.

b) Réponse à trouver : cov(Z,X) =
n

4

14 1. Yi est à valeurs dans {0,1} et

{Yi = 1} = {Xi = 1} ∩ {Xi+1 = 1}
Réponse à trouver : Yi ∼B(p2).
L’espérance et la variance s’obtiennent sans calcul

2. YiYi+1 suit elle aussi une loi de Bernouilli.
On a toujours {YiYi+1 = 1} = {Yi = 1} ∩ {Yi+1 = 1}mais ici
Yi et Yi+1 ne sont pas indépendantes (toutes les deux
dépendent de Xi).
Pour s’en sortir exprimer {YiYi+1 = 1} comme une inter-
section de trois événements dépendant de Xi , Xi+1 et
Xi+2 (qui elles sont indépendantes).
On trouve YiYi+1 ∼B(p3).
Pour la covariance utiliser

cov(Yi ,Yi+1) = E(YiYi+1)−E(Yi)E(Yi+1)
Réponse à trouver : cov(Yi ,Yi+1) = p3 − p4.

3. Yi et Yj ne sont pas indépendantes si j = i + 1, mais elles
le sont si j ≥ i + 2.

15 1. Une modélisation possible à l’aide de variables aléa-

toires de lois usuelles

• Noter Xj le numéro de l’urne choisie pour la je boule
pour tout j ∈ ⟦1 , an⟧.

• Xj ∼U (⟦1 ,n⟧).
• Noter que : Ai = {X1 , i} ∩ · · · ∩ {Xan , i}.

• Loi de Ti . Ti = 1Ai
est à valeurs dans {0,1} et
P (Ti = 1) = P (Ai)

puis utiliser l’indépendance des Xj .
Réponse à trouver : P (Ai) = pn

• Loi de TiTj . De même avec TiTj = 1Ai∩Aj
. Réponse à

trouver : P (Ai ∩Aj ) = rn

2. • Espérance. Exprimer Yn à l’aide des Ti ( SF 2 option 5)

• Variance. V (Sn) =
1
n2

( n∑
i=1

V (Ti) + 2
∑

1≤i<j≤n
cov(Ti ,Tj )

)
Calculer V (Ti) et cov(Ti ,Tj ) = E(Ti)E(Tj ) − E(Ti)E(Tj )
en utilisant les lois de TiTj et Ti

• Limites. Revenir à l’exponentielle.
Réponse à trouver : pn −→n→+∞

e−a et rn −→n→+∞
e−2a

2



16 1. Xi = 1Ai
où Ai est : « l’ascenseur s’arrête au ie étage ».

Ainsi Xi suit la loi de Bernoulli de paramètre P (Ai).

Montrer que P (Ai) =
(
1 − 1

p

)n
(en notant Ej la variable

désignant le numéro de l’étage choisi par la je personne,
Ej ∼U (⟦1 ,p⟧) et Ai = {E1 , i} ∩ · · · ∩ {En , i})

2. Exprimer X en fonction des Xi (voir SF 2 ).

Réponse à trouver : E(X) = p
(
1−

(
1− 1

p

)n)
.

3. Les Xi n’étant pas indépendantes :

V (X) =
p∑

i=1

V (Xi) + 2
∑

1≤i<j≤p
cov(Xi ,Xj )

Dans cette expression

• V (Xi) est connu vu que Xi ∼B
(
1−

(
1− 1

p

)n)
• cov(Xi ,Xj ) = E(XiXj )−E(Xi)E(Xj ) où :

• E(Xi)E(Xj ) est connu
• E(XiXj ) est à calculer en remarquant que XiXj suit

la loi de Bernoulli de paramètre P (Ai ∩Aj ).
Ici Ai et Aj ne sont pas indépendants. Utiliser
P (Ai∩Aj ) = 1−P (Ai∪Aj ) = 1−P (Ai)−P (Aj )+P (Ai∩Aj )

et montrer que : P (Ai ∩Aj ) =
(
1− 2

p

)n
.

Réponse finale :

V (X) = p
(
1−1

p

)n(
1−

(
1−1

p

)n)
+p(p−1)

((
1−2

p

)n
−
(
1−1

p

)2n
)

17 1. • Loi de X. Utiliser : P (X = i) =
m∑
j=1

P
(
{X = i}∩{Y = j}

)
Réponse : X ∼U (⟦1 ,n⟧)

• Loi de Y . De même. Réponse : Y ∼U (⟦1 ,m⟧)
• Indépendance de X et Y . Constater les égalités

P
(
X = i , Y = j

)
= P (X = i)P (Y = j)

pour tous (i, j) ∈ ⟦1 ,n⟧× ⟦1 ,m⟧.

2. Montrer que : P
(
X = i , Y = j

)
=

1
nm

pour tous (i, j) ∈ ⟦1 ,n⟧× ⟦1 ,m⟧.

18 • Si X et Y sont indépendantes : P (X = i , Y = j) s’écrit sous

la forme uivj où ui = P (X = i) et vj = P (Y = j).

A a pour colonnes (v1C,v2C, . . . ,vpC) où C =


u1
...
un

 .

• Pour la réciproque, si A est de rang 1, les colonnes
(C1, . . . ,Cp) de A sont toutes proportionnelles à une même
colonne C. Ceci permet de montrer que :

• P (X = i ,Y = j) = ciαj pour certains ci ,αj ∈R.
• On en déduit : P (X = i) = aci et P (Y = j) = sαj

où : a =
p∑

j=1

αj et s =
n∑
i=1

ci .

• Il reste à montrer que as = 1 pour assurer l’indépen-
dance de X et Y

19 1. a) Appliquer la technique du savoir-faire SF 8

Réponse finale : P (U = k) =
2k − 1
n2

b) Utiliser E(U ) =
n∑

k=1

kP (U = k)

2. a) U et V ne sont pas indépendantes : trouver un couple
(i, j) pour lequel

P ({U = i} ∩ {V = j}) , P (U = i)P (V = j)
b) Remarquer que : U +V = X +Y .

Cela permet d’exprimer V en fonction de X, Y et U
dont les espérances sont connues.

Réponse finale : E(V ) =
(n+ 1)(2n+ 1)

6n
.

3. Il s’agit de calculer P
(
{U = i} ∩ {V = j}

)
pour tous i, j ∈

⟦1 ,n⟧. U et V ne sont pas indépendantes donc :
P
(
{U = i} ∩ {V = j}

)
, P (U = i)P (V = j)

Exprimer l’événement {U = i} ∩ {V = j} en fonctions des
événements {X = i} et {Y = j} et utiliser l’indépendance
de X et Y (distinguer 3 cas sur i et j)

Réponse finale : P
(
{U = i} ∩ {V = j}

)
=


0 si i < j
1
n2 si i = j
2
n2 si i > j

20 1. Deux possibilités :

• Méthode 1. En partant de l’égalité d’événements :
{Yk+1 = 1} = {Yk = 1}∩{Xk+1 = 1}∪{Yk = −1}∩{Xk+1 = −1}
puis en prenant la probabilité de cette réunion incom-
patible (et Xk+1 et indépendante de Yk)

• Méthode 2. On calcule P (Yk+1 = 1) par la formule des
probabilités totales avec le s.c.e.

(
{Yk = 1} , {Yk = −1}

)
.

2. • uk + vk = 1
• Avec 1. (uk − vk) est géométrique de raison 2p − 1
On en déduit uk et vk par somme et différence

21 1. a) Sachant {N = i} il s’agit d’un tirage simultané de i

boules choisies parmi n boules.
Ainsi : P{N=i}(Xj = 1) = |A|

|Ω| où

• Ω est l’ensemble des combinaisons de i boules choi-
sies parmi n

• A : « La boule j fait partie des i boules choisies »

Reste à dénombrer Ω (tirages simultanés) et A. Pour
dénombrer A, pensez « comme un tricheur », réaliser
A revient à mettre la boule j de côté puis à tirer i − 1
boules dans l’urne contenant n− 1 boules.
Réponse finale après simplifications : P{N=i}(Xj = 1) = i

n .
b) Xj suit une loi de Bernoulli donc E(Xj ) = P (Xj = 1).

Calculer P (Xj = 1) via la formule des probabilités to-

tales avec le sce
(
{N = i}

)
1≤i≤n

.

Réponse finale : E(Xj ) = n+1
2n

2. Réponse finale : E(S) = (n+1)2

4

22 Remarquer que {X ≥ a} ⊂ {g(X) ≥ g(a)} puis appliquer une
inégalité probabiliste.

23 Appliquer l’inégalité de Bienaymé-Tchebychev à
Sn
n

.

24 Plusieurs possibilités on peut par exemple :

• Poser Y =
Xn

n
− p et appliquer l’inégalité de Markov à |Y |

Montrer ensuite que E(|Y |) ≤
√
V (Y ) (fait en cours).

3



• Appliquer directement l’inégalité de Bienaymé-

Tchebychev et discuter selon la position de
p(1− p)
ε2n

par

rapport à 1.

25 1. Appliquer l’inégalité de Bienaymé-Tchebychev à Sn
n .

2. E(etSn ) = E(etX1 . . . etXn ) puis utiliser l’indépendance des
Xi et enfin le théorème de transfert pour calculer E(etXi ).

3. a) Etudier la fonction f : t 7→ e−
t2

2 ch t

b) Appliquer l’inégalité de Markov :
P (Y ≥ a) ≤ E(Y )

a avec Y = etSn et a = entε.
après avoir montré que {Y ≥ a} =

{
Sn
n ≥ nε

}
.

Utiliser ensuite la question 3a).
c) La question 3b) assure que :

∀t > 0 , P
(Sn
n
≥ ε

)
≤ e

nt2

2 −ntε︸   ︷︷   ︸
=g(t)

Ainsi : P
(Sn
n
≥ ε

)
≤min

t∈R∗+
g.

Etudier g sur R∗+ et montrer que min
t∈R∗+

g = e−
nε2

2 .

26 1. Appliquer l’inégalité de Bienaymé-Tchebychev à Sn.

2. Remarquer que x2P (Ak) = E(x21Ak
) puis utiliser la crois-

sance de l’espérance.
3. Remarquer que :

S2
n1Ak

=
(
(Sn − Sk) + Sk

)2
1Ak
≥ 2(Sn − Sk)Sk1Ak

+ S2
k1Ak

puis exploiter l’indépendance de Sn − Sk et Sk1Ak

(lemme des coalitions) pour montrer que
E
(
(Sn − Sk)Sk1Ak

)
= 0

4. A est la réunion disjointe des Ak . En sommant les inégali-
tés des deux questions précédentes : x2P (A) ≤ E(S2

n1A).
Reste à montrer que E(S2

n1A) ≤ nσ2.
Pour cela, remarquer que nσ2 = E(Sn).

27 Appliquer l’inégalité de Bienaymé-Tchebychev à Sn.

28 a) Appliquer l’inégalité de Markov à (X −m+ t)2.

b) Optimiser l’inégalité de la question précédente par rap-

port à t : chercher le minimum de t 7→ t2 + σ2

(t + a)2 .

c) On peut appliquer l’inégalité de la question b à la va-
riable Y = −X d’espérance −m.

4


