
28
Séries Exercices

■ Calculer des sommes

1 SF 1 Justifier la convergence et calculer la somme de la
série de terme général un :

a) un = 23−5n b) un =
(1 + i)n

(1 + 2i)n
c) un =

sinn

2n

d) un =
1

n2 −n
e) un = ln(1− 1

n2 ) f) un =
6n+ 4

n(n2 − 1)

g) un =
n22n

n!
h) un =

n2 +n− 1
n!

2 SF 1 Montrer que la série
∑ 1

(n+ 1)(2n+ 1)2n+1 converge
et calculer sa somme.

3 SF 6 1. Déterminer en fonction de a,b ∈R la nature de∑(
lnn+ a ln(n+ 1) + b ln(n+ 2)

)
2. Calculer la somme lorsqu’il y a convergence.

■ Utilisation des critères de comparaison

4 SF 2 SF 4 Etudier la nature des séries de terme général un :

a) un =
n5 + lnn

n7 + 1
b) un = sin

(
2−n

)
c) un =

Arctan(n5)
n2 d) un = ln

(n2 +n+ 1
n2 +n+ 2

)
e) un = n

1
n f) un =

1
nn1/n

g) un =
( n

1 +n

)√n
h) un =

chn

ch2n

i) un = sinn j) un =
1

lnn

k) un =
1

√
ncos2n

l) un =
(
2 +

1
n

)−n
5 SF 2 SF 4 Etudier la nature des séries de terme général un :

a) un =
1 + (−1)nn

n2 b) un = ln(1 +
1
n

)− 1
n2

c) un =
cosn− sinn

n2 d) un = 1 +
3
n2

e) un =
√
n+ 1

2 −
√
n f) un =

(
1 +

1
n3

)n2

− 1

6 SF 2 SF 4 SF 5 Etudier la nature des séries :

a)
∑

n3e−n b)
∑ lnn

n
ln
(
1 +

1
n

)
c)

∑( n

n+ 1

)n2

d)
∑(

cos
1
n

)n3

e)
∑ 1

(lnn)lnn
f)

∑(
1− 1

lnn

)√n
g)

∑
e−
√

lnn

7 SF 2 SF 4 Etudier la nature des séries de terme général un :

a) un = 2ln(n3 + 3)− 3ln(n2 + 2)

b) un =
n!
nn

c) un = e −
(
1 +

1
n

)n
d) un = sin

(
sh

1
n

)
− sh

(
sin

1
n

)
e) un =

∫ 2n

n

dt

1 + t
3
2

8 SF 4 SF 6 Déterminer en fonction de α > 0 la nature de :

a)
∑(

ln
(
1 +

1
n

)
−α sin

(1
n

))
b)

∑
cos

(
Arctann+

1
nα

)

9 SF 4 Pour tout n ∈N, on pose : Rn =
+∞∑

k=n+1

1
k!

.

1. Etablir : Rn ∼
1

(n+ 1)!
.

2. En déduire que la série
∑

sin(2πen!) est divergente.

■ Utilisation d’une série auxiliaire

10 SF 4 1. Déterminer la nature de :
∑

sin
(
π(2−

√
3)n

)
.

2. a) Montrer que pour tout n ∈N, (2 +
√

3)n + (2−
√

3)n est
un entier pair.

b) En déduire la nature de :
∑

sin
(
π(2 +

√
3)n

)
.

11 Soit α ∈R. Pour tout n ∈N∗, on pose :

un =
(−1)

n(n+1)
2

nα
et vn = u2n−1 +u2n

1. Déterminer la nature de
∑

un lorsque α ≤ 0 ou α > 1.

2. On suppose que α ∈ ]0 ,1[.

a) Montrer que
∑

vn converge.

b) En déduire que
∑

un converge.

■ Des DL pour « découper » une série alternée

12 SF 2 SF 6 Etudier la convergence absolue et la convergence
des séries de terme général un :

a) un = ln
(
1 +

(−1)n

n

)
b) un = (−1)n

√
n tan

(1
n

)
c) un =

(−1)n

n
3
4 + cosn

d) un = sin
(
π
√
n2 + 1

)
e) un =

√
n+ (−1)n −

√
n

13 SF 6 Soit α ∈ R∗+. Etudier la convergence absolue et la

convergence de : a)
∑

(−1)n
√
nsh

( 1
nα

)
b)

∑ (−1)n

nα + (−1)n

14 SF 3 SF 4 SF 6 1. Soit p ∈N∗ fixé. Etudier la nature de :

a)
∑ 1

(lnn)p
b)

∑ (−1)n

(lnn)p

2. Etudier la convergence absolue et la convergence de la

série :
∑ (−1)n

ln(n) + (−1)n

■ Autour du lien suite-série

15 SF 6 L’objectif est d’établir la formule de Stirling.

1. Pour tout n ∈N∗, on pose : σn = lnn!−
(
n+

1
2

)
lnn+n.

a) Montrer que la suite (σn)n≥1 est convergente.
b) En déduire l’existence d’une constante C telle que

n! ∼
x→+∞

C
(n
e

)n√
n

2. Montrer que C =
√

2π. On pourra utiliser l’équivalent

W2n ∼
√
π

2
√
n
où pour tout n ∈N, Wn =

∫ π/2

0
cosn tdt.



16 SF 4 Soit u ∈ RN strictement positive telle que la série∑
un diverge. Pour tout n ∈N, on pose Sn =

n∑
k=0

uk .

1. Montrer que
∑

ln
Sn−1

Sn
diverge.

2. En déduire que
∑ un

Sn
diverge.

17 SF 4 SF 6 On fixe x ∈R∗+. Pour tout n ∈N∗, on pose :

un =
n!
xn

n∏
k=1

ln
(
1 +

x

k

)
1. Prouver que : lnun+1 − lnun = −α

n
+O

( 1
n2

)
pour un certain α > 0 à déterminer en fonction de x.

2. Montrer que la série de terme général :

vn = lnun+1 − lnun +α ln
(
1 +

1
n

)
est convergente.

3. En déduire que : un ∼
C

nα
pour une constante C > 0,

puis déterminer en fonction de x la nature de
∑

un.

■ Majoration des restes d’une série alternée

18 SF 3 Montrer que S =
+∞∑
n=0

(−8)n

(2n)!
est un réel négatif.

19 SF 3 Pour tout entier naturel n on pose : In =
∫ nπ

0

sin t

t
dt

1. Justifier que (In)n∈N est bien définie.

2. Etablir : ∀n ∈N,

∫ nπ

0

sin t

t
dt =

n−1∑
k=0

(−1)k
∫ π

0

sin t

kπ+ t
dt

3. En déduire que la suite (In) converge et que lim
n→+∞

In ≥ 0.

20 SF 3 SF 4 SF 6 Pour tout n ∈N, on pose : Rn =
+∞∑

k=n+1

(−1)k

k

1. Montrer que Rn +Rn+1 =
n→+∞

O
( 1
n2

)
2. Déterminer un équivalent de Rn.

21 SF 3 SF 4 SF 6 Pour tout n ∈N, on pose : bn =
n∑

k=0

(−1)k
√
k.

1. Montrer que (bn + bn+1) converge vers une limite ℓ < 0.

2. Etudier la nature de
∑ 1

bn
.

■ Comparaison série intégrale

22 SF 7 Pour tout α > 1, on pose ζ(α) =
+∞∑
n=1

1
nα

.

Montrer que : ζ(α) ∼
α→1+

1
α − 1

.

23 SF 7 Montrer que :
+∞∑
n=1

1
n2 + a2 ∼

a→+∞
π

2a
.

24 SF 8 Soit α > 1 et u ∈ RN strictement positive telle que∑
un diverge. Pour tout n ∈N, on pose Sn =

n∑
k=0

uk .

Montrer que
∑ un

Sα
n

converge.

25 SF 8 SF 10

1. Montrer la convergence de la série :
∑ 1

n(lnn)2

2. Avec la même technique, montrer : Rn ∼
1

lnn
.

26 SF 10 Pour tout n ∈N∗, on pose : Rn =
+∞∑

k=n+1

1
k3 .

Trouver un équivalent de Rn.

27 Soit f : R+ → C de classe C 1. On suppose qu’il existe

M ∈R+ tel que pour tout n ∈N :
∫ n

0

∣∣∣f ′(t)∣∣∣dt ≤M.

1. Montrer que la série
∑∫ n+1

n
(n+ 1− t)f ′(t)dt converge

2. En déduire que la série
∑

f (n) converge si et seulement

si la suite
(∫ n

0
f (t)dt

)
n∈N

converge.

■ Plus abstraits

28 SF 4 cf. Ex. 39, banque INP
On note E l’ensemble des suites u ∈RN pour lesquelles la
série

∑
u2
n converge.

1. Montrer que pour tous réels a et b : 2 |ab| ≤ a2 + b2.
2. Montrer que pour toutes suites u,v ∈ E, la série de terme

général unvn est convergente.
3. En déduire que E est un sous-espace vectoriel de l’en-

semble RN des suites réelles.

29 SF 4 Soit (un)n∈N ∈ RN, strictement positive telle que

la série
∑

un converge. Montrer que les séries
∑

u2
n et∑ un

1−un
convergent.

30 SF 6 Soit u ∈RN telle que
∑

un et
∑

u2
n convergent.

Montrer que la série
∑ un

1 +un
converge.

31 SF 4 Ex. 6, banque INP

Soit u ∈RN strictement positive telle que :
un+1

un
−→

n→+∞
ℓ < 1

1. a) Démontrer qu’il existe q ∈ ]0 ,1[ et n0 ∈N tels que :
∀n ≥ n0, un+1 ≤ qun

b) En déduire : ∀n ≥ n0, un ≤ qn−n0 un0
.

c) En déduire que la série de terme général un converge.

2. Application. Quelle est la nature de la série
∑ n!

nn
?

32 Soit (un)n∈N une suite décroissante réelle.

On suppose que la série
∑

un converge.

1. Pour tout n ∈N, on pose Sn =
n∑

k=0

uk .

a) Etudier lim
n→+∞

S2n − Sn b) En déduire : nu2n −→n→+∞
0

2. En déduire que un = o
(1
n

)
.

33 SF 4 Soit (un)n∈N strictement positive. On suppose qu’il

existe α > 1 tel que :
un+1

un
= 1− α

n
+ o

(1
n

)
.

Montrer que la série
∑

un converge. Indication : montrer que

pour tout β < α, la suite (nβun)n∈N décroît à partir d’un certain rang.

34 Soit (un)n∈N ∈ RN, strictement positive, croissante et ten-

dant vers +∞. Soit (vn) ∈ CN telle que la série
∑ vn

un

converge. Montrer que :
1
un

n∑
k=0

vk −−−−−→n→∞
0.

2


