
28
Séries Indications

1 a) Faire apparaître une série géométrique. Réponse :
+∞∑
n=0

un =
256
31

b) Il s’agit d’une série géométrique de raison q =
1 + i

1 + 2i
.

Réponse :
+∞∑
n=0

un = 2− i

c) Passer en complexe : un = Im
(ein

2n

)
. La série est ainsi la

partie imaginaire d’une série géométrique.

Réponse :
+∞∑
n=0

un =
2sin1

5− 4cos1

d) Faire apparaître une série télescopique avec :
1

n(n− 1)
=

1
n− 1

− 1
n

. Réponse :
+∞∑
n=2

un = 1.

e) On peut calculer la somme partielle en utilisant les pro-
priétés du logarithme puis en séparant les sommes et en
simplifiant les termes communs. Pour n ≥ 2 on obtient
n∑

k=2

uk = ln
(n+ 1

n

)
− ln2. Réponse :

+∞∑
n=2

un = − ln2.

f) Par D.E.S. un =
−4
n

+
5

n+ 1
− 1
n− 1

.

On peut ainsi calculer les sommes partielles.

Réponse :
+∞∑
n=2

un =
11
2
.

g) Faire apparaître des séries exponentielles en écrivant
n2 = n

(
(n − 1) + 1

)
au numérateur puis en séparant les

sommes. Réponse
+∞∑
n=0

un = 6e2.

h) Faire apparaître des séries exponentielles en écrivant
n2 = n(n − 1) + n au numérateur puis en séparant les

sommes. Réponse
+∞∑
n=0

un = 2e.

2 A l’aide d’une D.E.S.

Sn =
n∑

k=0

1
2k + 1

× 1
2k
− 1
k + 1

× 1
2k+1

La somme n’est pas télescopique.
On peut la mettre sous forme intégrale en remplaçant

1
2n+ 1

par
∫ 1

0
t2n dt et

1
n+ 1

par
∫ 1

0
tn dt.

La somme qui apparaît se calcule en faisant apparaître deux
sommes géométrique.
On obtient finalement, après simplifications

Sn =
∫ 1

0

1
2− t2

(
2− t2n+2

2n

)
dt −

∫ 1

0

1
2− t

(
1− tn+1

2n+1

)
dt

On conclut de façon usuelle en séparant la partie qui dé-
pend de n :

Sn =
∫ 1

0

1
t − 2

dt︸       ︷︷       ︸
I

−
∫ 1

0

2
t2 − 2

dt︸        ︷︷        ︸
J

− 1
2n

∫ 1

0

1
2− t2 t

2n+2 dt︸               ︷︷               ︸
Kn

+
1

2n+1

∫ 1

0

1
2− t

tn+1 dt︸             ︷︷             ︸
Ln

puis :

• On calcule I et J (à l’aide d’une D.E.S pour J)

• On montre que Kn et Ln tendent vers 0 en encadrant l’in-
térieur (ou on montre qu’elles sont bornées ce qui suffit
ici)

Réponse : Sn −→n→+∞
− ln2 +

√
2ln(1 +

√
2)

3 Mettre lnn en facteur puis utiliser le DL de ln(1 + x) :

un = lnn+a ln(n+1)+b ln(n+2) = (1 + a+ b) lnn+
a+ 2b
n

+O(
1
n2 )︸             ︷︷             ︸

wn

• Si 1 + a+ b , 0 alors un ∼ (1 + a+ b) lnn ̸→ 0.

• Si 1 + a+ b = 0 i.e. si a+ b = −1, alors un = wn d’où :

• Si a+ 2b , 0 : un ∼ a+2b
n et

∑
un DV.

• Si a+ 2b = 0 : un = O( 1
n2 ) et

∑
un CV.

La série converge ssi 1 + a+ b = 0 et a+ 2b = 0 i.e. a = −2 et
b = 1.

4 N.B. Ici les séries sont de signes constants donc les critères
de convergence par majoration ou équivalence sont licites.
a) Convergente : un ∼ 1

n2 .

b) Convergente : un ∼ 1
2n .

c) Convergente un ∼ π
2n2 ou un ≤ π

2n2 .

d) Convergente un ∼ − 1
n2 .

e) Grossièrement divergente : un→ 1
f) Divergente : un ∼ 1

n

g) Grossièrement divergente : un→ 1
h) Convergente : un ∼ e−n.
i) Grossièrement divergente.
j) Divergente : un ≥ 1

n .

k) Divergente : un ≥ 1√
n

.

l) Convergente : un ≤ 1
2n .

5 a) Convergente (somme de deux séries convergente).

b) Divergente : un ∼ 1
n

c) Absolument convergente : |un| ≤ 2
n2 .

d) Grossièrement divergente.
e) Divergente : un ∼ 1

4
√
n

(par quantité conjuguée ou en fac-

torisant par
√
n puis en utilisant le DL de (1 + x)

1
2 )

f) Divergente : un ∼ 1
n (en revenant à l’exponentielle écrire

un = evn − 1 et montrer que vn ∼ 1
n puis utiliser l’équi-

valent de ex − 1 en 0)

6 On peut appliquer la méthode du savoir-faire SF 5 :

• On revient à l’exponentielle : un = evn .

• limvn , −∞ : il y a divergence grossière.

• Si limvn = −∞, on peut essayer de montrer que n2un→ 0 :

• On revient à l’exponentielle : n2un = e2lnn+vn = ewn .
• Montrer que n2un→ 0 revient à montrer que wn→−∞.

a) Convergente : n2un→ 0.

b) Convergente : un ∼ lnn
n2 puis n

3
2 un→ 0.



c) Convergente : montrer que n2un→ 0.
Pour cela écrire n2un sous forme exponentielle

n2un = e2lnnen
2 ln( n

n+1 ) = ewn

Il s’agit alors de montrer que wn→−∞.
Pour cela, chercher un équivalent de wn, on trouve
wn ∼ −n→−∞.

d) Convergente : montrer que n2un→ 0.
Pour cela écrire n2un sous forme exponentielle

n2un = e2lnnen
3 cos( 1

n ) = ewn

Il s’agit alors de montrer que wn→−∞.
Pour cela, chercher un équivalent de wn, on trouve
wn ∼ −n

2 →−∞.

e) Convergente : montrer que n2un→ 0.
Pour cela écrire n2un sous forme exponentielle

n2un = e2lnne− lnn ln(lnn) = ewn

Il s’agit alors de montrer que wn → −∞ (factoriser par
lnn)

f) Convergente : montrer que n2un→ 0.
Pour cela écrire n2un sous forme exponentielle

n2un = e2lnne
√
n ln(1− 1

lnn ) = ewn

Il s’agit alors de montrer que wn→−∞.
Pour cela, chercher un équivalent de wn, on trouve

wn ∼ −
√
n

lnn →−∞.
g) Ici :

• un → 0 donc il n’y a pas divergence grossière : mais
cela ne permet pas de dire que la série converge

• n2un = elnn−
√

lnn → +∞ mais cela ne permet pas non
plus de dire que la série diverge.

En revanche on montre que nun→ +∞ (revenir aux ex-
ponentielles) ce qui assure que

∑
un diverge.

7 a) Convergente : un ∼ −6
n2 (factoriser par n3 dans le log dans

le premier terme et par n2 dans le deuxième terme et
utiliser le DL de ln(1 + x))

b) Convergente un ≤ 2
n2 dès que n ≥ 2 en majorant judicieu-

sement n!.
c) Divergente : un ∼ e

2n . Revenir à l’exponentielle puis
mettre e en facteur : un = −e(evn −1) où vn = n ln(1+ 1

n )−1.
Chercher alors un équivalent de vn. On trouve vn ∼ − 1

2n
puis utiliser l’équivalent en 0 de ex − 1.

d) Convergente : en utilisant les DL on montre que un =
O( 1

n3 ).
e) Divergente : par croissance de l’intégrale (en minorant

l’intérieur) on trouve un ≥ n

1+(2n)
3
2

= vn et
∑
vn diverge

car vn ∼ 1

2
3
2
√
n

.

8 a) A l’aide de DL on trouve

un = ln(1 +
1
n

)−α sin
1
n

=
1−α
n

+wn

où wn = O( 1
n2 ). Distinguer deux cas :

• Si α = 1 alors un = O( 1
n2 ) donc la série est convergente.

• Si α , 1, alors un ∼ 1−α
n et la série est divergente.

b) En utilisant Arctann = π
2 −Arctan 1

n on obtient :

un = cos(Arctann+
1
nα

) = sin
(
Arctan

1
n
− 1
nα

)
= sinvn

Ainsi un ∼ vn donc la série est de même nature que∑
Arctan 1

n −
1
nα .

• Si α > 1 : vn ∼ 1
n donc la série diverge.

• Si α < 1 : vn ∼ − 1
nα donc la série diverge.

• Si α = 1, avec un DL de Arctan : vn = O( 1
n3 ) donc la

série converge.

9 1. Appliquer une formule de Taylor à exp entre 0 et 1 :

• Option 1. On peut écrire Rn =
1

(n+ 1)!
+Rn+1 puis majo-

rer |Rn+1| =

∣∣∣∣∣∣∣e1 −
n+1∑
k=0

1
k!

∣∣∣∣∣∣∣ à l’aide de l’inégalité de Taylor-

Lagrange appliquée à exp à l’ordre n+ 1.

• Option 2. Exprimer directement Rn =

∣∣∣∣∣∣∣e1 −
n∑

k=0

1
k!

∣∣∣∣∣∣∣ sous

la forme d’une intégrale avec la formule de Taylor avec
reste intégral puis chercher un équivalent de l’inté-
grale obtenue par intégration par parties.

2. Ecrire : e =
n∑

k=0

1
k!

+Rn.

10 1. On peut utiliser le critère d’équivalence pour les séries

à termes positifs :
q = (2 −

√
3) ∈ ]−1 ,1[ donc qn → 0 et sin(πqn) ∼ πqn

(terme général positifd’une série géométrique conver-
gente)

2. a) Développer avec la formule du binôme :

(2 +
√

3)n + (2−
√

3)n =
n∑

k=0

(
n

k

)
(
√

3)k2n−k
(

1 + (−1)k︸    ︷︷    ︸
0 si k est impair

)
les termes d’indices impairs se simplifient 1, la somme
se réduit aux termes d’indices pairs i.e. les k = 2p :

(2 +
√

3)n + (2−
√

3)n =
( ∑

0≤2p≤n

(
n

2p

)
3p2n−2p

)
︸                     ︷︷                     ︸

An∈N

×2 = 2An

b) N.B. Ici on ne peut pas reproduire le raisonnement de la a)
car (2 +

√
3)n ̸→ 0 donc impossible d’utiliser l’équivalent

de sinx ∼
x→0

x en 0. L’idée est d’exploiter la question a)

pour se ramener à la question 1.
Utiliser la a) : π(2 +

√
3)n = 2Anπ − (2−

√
3)n.

Utiliser ensuite la 2π périodicité et l’imparité du sinus
pour se ramener à la question 1.

11 1. Ce sont les cas « simples », il y a :

• divergence grossière si α < 0
• convergence absolue si α > 1.

2. a) En simplifiant l’expression on obtient :

vn = (−1)n
( 1

(2n− 1)α
+

1
(2n)α︸                ︷︷                ︸

an

)
= (−1)nan

Appliquer alors le théorème concernant les séries al-
ternées (en vérifiant les conditions sur (an)).

b) Montrer que (S2n) et (S2n+1) convergent vers la même
limite.

1. On peut toujours séparer termes pairs et impairs :
n∑

k=0

ak =
∑

0≤2p≤n
a2p +

∑
0≤2p+1≤n

a2p+1. Dans notre cas le « paquet » des termes impairs est nul

2



• Pour (S2n) : séparer les termes d’indices impairs
k = 2p − 1 et pairs k = 2p :

S2n =
2n∑
k=1

uk =
n∑

p=1

u2p−1 +
n∑

p=1

u2p =
n∑

p=1

vp

puis utiliser la question a).

• Pour (S2n+1), il suffit d’écrire S2n+1 = S2n +u2n+1.

12 Attention, un n’est pas de signe constant donc :

• le critère d’équivalence n’est pas permis pour étudier la conver-
gence

• on peut par contre utiliser un équivalent sur |un| pour la
convergence absolue

• S’il n’y a pas convergence absolue, utiliser les DL (cf. SF 6 )

a) Pas absolument convergente : |un| ∼ 1
n .

Convergente : le DL de ln(1 + x) permet d’écrire

un =
(−1)n

n
+wn où wn = O(

1
n2 )∑

un est donc la somme de deux séries convergentes (une
série alternée + une série justiciable du théorème de
convergence par domination).

b) Pas absolument convergente : |un| ∼ 1
n .

Convergente : le DL de tanx permet d’écrire un = (−1)n√
n

+

wn où wn = O( 1

n
5
2

).∑
un est donc la somme de deux séries convergentes (une

série alternée + une série justiciable du théorème de
convergence par domination).

c) Pas absolument convergente : |un| ∼ 1

n
3
4

.

Convergente : le DL de tanx permet d’écrire :
un = (−1)n

n
3
4

+wn où wn = O( 1

n
3
2

).∑
un est donc la somme de deux séries convergentes (une

série alternée + une série justiciable du théorème de
convergence par domination).

d) S’inspirer de la technique utilisée en cours pour l’Ex.
46, banque INP. On montre que un = π

2
(−1)n

n + wn où
wn = O( 1

n3 ). Cette expression permet de montrer que∑
un converge et qu’il n’y a pas convergence absolue.

e) Factoriser par
√
n puis utiliser le DL de (1 + x)

1
2 .

On obtient un = 1
2

(−1)n√
n

+O( 1

n
3
2

).

Cette expression permet de montrer que
∑
un converge

et qu’il n’y a pas convergence absolue.

13 Attention, un n’est pas de signe constant donc :

• le critère d’équivalence n’est pas permis pour étudier la conver-
gence

• on peut par contre utiliser un équivalent sur |un| pour la
convergence absolue

• Lorsqu’il n’y a pas convergence absolue : utiliser les DL (voir
SF 6 )

a)• Convergence absolue. |un| ∼ 1

nα−
1
2

donc il y a convergence

absolue ssi α >
3
2

.

• Convergence L’équivalent ci-dessus montre aussi que la
série diverge grossièrement lorsque α ≤ 1

2 .

Pour α > 1
2 , le DL de shx permet d’écrire

un =
(−1)n

nα−
1
2︸︷︷︸

vn

+O
( 1

n3α− 1
2

)
︸      ︷︷      ︸

wn∑
un est donc la somme de deux séries convergentes

(une série alternée et une série justiciable du théorème
de convergence par domination).

b)• Convergence absolue. |un| ∼ 1
nα donc il y a convergence

absolue ssi α > 1.
• Convergence Mettre (−1)n

nα en facteur puis utiliser le DL
de 1

1+x .

On obtient un =
(−1)n

nα︸︷︷︸
vn

− 1
n2α + o(

1
n2α )︸          ︷︷          ︸

wn

.

La série
∑
vn est convergente (série alternée).

Ainsi
∑
un est de même nature que

∑
wn. Or : wn ∼ 1

n2α

donc
∑
wn CV ssi α > 1

2 .

14 1. a) Divergente : n× 1
(lnn)p → +∞ donc 1

(lnn)p ≥
1
n APCR.

b) Convergente : (série alternée).
2. Il n’y a pas convergence absolue : |un| ∼ 1

lnn .

Pour la convergence, factoriser par (−1)n

lnn puis utiliser le
DL de 1

1+x . On trouve :

un =
(−1)n

lnn+ (−1)n
= (−1)n

lnn︸︷︷︸
vn

+− 1
lnn2 + o

(
1

lnn2

)
︸             ︷︷             ︸

wn

Avec la question a),
∑
vn converge et wn ∼ 1

lnn2 donc∑
wn diverge. La série est donc divergente.

15

16 1. Il s’agit d’une série télescopique
∑

lnSn−1 − lnSn, il

suffit d’utiliser le théorème relatif à ce type de série.

2. Remarquer que ln
Sn−1

Sn
= ln

(
1− un

Sn

)
.

17 1. lnun+1 − lnun = ln un+1
un

.

Avec la définition de un on trouve : un+1
un

= n+1
x ln(1+ x

n+1 ).

Un DL de ln(1 +u) donne un+1
un

= 1− x
2(n+1) +O( 1

n2 )︸           ︷︷           ︸
=wn

.

Un nouveau DL de ln(1 +w) donne ensuite

ln
(un+1

un

)
= − x

2n
+O(

1
n2 )

2. Le résultat de la 1 et un DL de ln(1+x) donne vn = O( 1
n2 ).

3. Il s’agit de montrer que nαun→ C > 0.
Utiliser un télescopage avec la question 2 :

∀k ∈ ⟦1 ,n− 1⟧, ln(uk+1)− lnuk = vk −α ln(1 +
1
k

)

En sommant pour k ∈ ⟦1 ,n− 1⟧ on obtient :

ln(un) = lnu1 +
( n∑
k=1

vk

)
−α lnn.

Ainsi ln(nαun) = lnu1 +
( n∑
k=1

vk

)
qui a une limite finie L

vu que
∑
vk converge.

Ainsi nαun→ C = eL > 0.
La série

∑
un est de même nature que

∑ 1
nα .

3



Réponse :
∑
un CV ssi x > 2.

18 Il s’agit de la somme d’une série de la forme
∑

(−1)nan
mais (an) n’est décroissante qu’à partir du rang 1.
En conséquence, le signe ainsi que la majoration des restes

Rn =
+∞∑

k=n+1

(−1)kak ne valent que pour n ≥ 1. « Sortir » les

deux premiers termes de S puis majorer R1 =
+∞∑
k=2

(−1)kak à

l’aide du théorème des séries alternée ( SF 3 )

19 1. Justifier que f : t 7→ sin t

t
est prolongeable en une fonc-

tion continue sur [0 ,nπ].
2. Découper l’intégrale comme une somme d’intégrales sur

[kπ , (k + 1)π] puis effectuer le changement de variable
t = kπ+ x.

3. Utiliser le théorème des séries alternées pour justifier
la convergence. La positivité de la limite s’obtient en
exprimant la limite en fonction de R0 puis en utilisant
l’encadrement de R0 fourni par le théorème des séries
alternées.

20 1. Commencer par montrer que Rn +Rn+1 =
+∞∑

k=n+1

(−1)k

k(k + 1)

puis appliquer la majoration des restes fournie par
le théorème des séries alternées ( SF 3 ) pour majorer∣∣∣∣∣∣∣

+∞∑
k=n+1

(−1)k

k(k + 1)

∣∣∣∣∣∣∣.
2. Simplifier Rn −Rn+1 puis combiner avec le résultat de 1..

On obtient : Rn =
(−1)n+1

2(n+ 1)
+O

( 1
n2

)
.

21 1. Remarquer que bn + bn+1 = −
n∑

k=0

(−1)k
√
k +
√
k + 1

(quantité

conjuguée) pour faire apparaître une série alternée. Pour
le signe de la limite utiliser la majoration des restes four-
nie par le théorème des séries alternées ( SF 3 ) pour

minorer R1 =
+∞∑
k=1

(−1)k
√
k +
√
k + 1

.

2. Poser un = bn + bn+1 et remarquer que :

• La question 1. assure que un ∼ ℓ.

• bn = (−1)n
√
n+ 1
2

+
un
2

En factorisant par
(−1)n

2
√
n

montrer alors que

1
bn

=
2(−1)n
√
n
−2un

n
+ o

(un
n

)
︸           ︷︷           ︸

=wn

ce qui permet de montrer que
∑ 1

bn
diverge.

22 On écrit ζ(α) = lim
x→+∞

Sn où Sn =
n∑

k=1

1
kα

puis on encadre Sn

à l’aide d’une comparaison série-intégrale en partant de

∀k ∈N∗, 1
(k + 1)α

≤
∫ k+1

k

1
tα

dt ≤ 1
kα

Tous calculs faits on obtient
1− (n+ 1)1−α

α − 1
≤ Sn ≤ 1 +

1−n1−α

α − 1
Conclure ensuite par passage à la limite n→ +∞ puis enca-
drement (version équivalents) pour α→ 1+.

23 La comparaison série-intégrale, qui s’appuie sur la décrois-
sance de t 7→ 1

t2+a2 sur [1 ,+∞[ pour écrire

∀k ∈N∗, 1
(k + 1)2 + a2 ≤

∫ k+1

k

1
t2 + a2 dt ≤ 1

k2 + a2

permet tous calculs faits de montrer que
1
a

(
Arctan

n+ 1
a
−Arctan

1
a

)
≤

n∑
k=1

1
k2 + a2

≤ 1
1 + a2 +

1
a

(
Arctan

n

a
−Arctan

1
a

)
Conclure ensuite par passage à la limite n→ +∞ puis enca-
drement pour a→ 1+.

24 Exploiter la décroissance de t 7→ 1
tα

sur ]0 ,+∞[ pour mon-

trer que pour tout k ≥ 1 :
uk
Sα
k

≤
∫ Sk

Sk−1

1
tα

dt.

Adapter ensuite la technique de comparaison série-intégrale

pour montrer la convergence de
∑ un

Sα
n

.

25 1. La comparaison série-intégrale, qui s’appuie sur la dé-

croissance de t 7→ 1
t(ln t)2 sur [2 ,+∞[ pour écrire

1
(k + 1)(ln(k + 1))2 ≤

∫ k+1

k

1
t(ln t)2 dt ≤ 1

k(lnk)2

et permet tous calculs faits de montrer que
n∑

k=2

1
k(lnk)2 ≤

1
2(ln2)2 +

1
ln2

La série est donc majorée. Puisqu’elle est à termes positif
elle est convergente (par théorème).

2. Pour encadrer Rn =
+∞∑

k=n+1

1
k(lnk)2 , repartir de l’encadre-

ment
1

(k + 1)(ln(k + 1))2 ≤
∫ k+1

k

1
t(ln t)2 dt ≤ 1

k(lnk)2

et suivre le savoir-faire SF 10 .
Tous calculs faits on obtient

1
ln(n+ 1)

≤ Rn ≤
1

lnn
qui conduit au résultat demandé.

26 La décroissance de t 7→ 1
t3 sur [1 ,+∞[ pour écrire

1
(k + 1)3 ≤

∫ k+1

k

1
t3 dt ≤ 1

k3

Fixer d’abord n ≥ 1 et N ≥ n (N est destiné à tendre vers
+∞) et sommer les inégalités ci-dessus.
Passer ensuite à la limite dans les inégalités pour N → +∞.

Réponse : Rn ∼
1

2n2

27 1. Posant ak =
∫ k+1

k
(k + 1− t)f ′(t)dt, on peut montrer que∑

ak converge absolument en majorant les sommes par-

tielles
n∑

k=0

|ak | par M.
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2. Intégrer
∫ k+1

k
(k + 1− t)f ′(t)dt par parties puis sommer

pour k ∈ ⟦0 ,n− 1⟧.

28 1. Développer 0 ≤ (|a| − |b|)2.

2. La 1 assure que
∑
unvn converge absolument.

3. Il s’agit de montrer que
• E possède la suite nulle u = (0)n∈N i.e. que

∑
02

converge.
• E est stable par combinaison linéaire. Fixer u,v ∈ E et
λ,µ ∈R et montrer que w = λu +µv ∈ E.
Il s’agit de montrer que la série

∑
w2
n converge : déve-

lopper w2
n et justifier la convergence de tous les mor-

ceaux.

29 La série est à termes positifs donc on peut utiliser tous
les critères de comparaison (y compris inégalités et équiva-
lents).

• Convergence de
∑
u2
n . Deux possibilités (au moins) :

• Méthode 1 : On justifie que u2
n = o(un).

• Méthode 2 : On justifie que u2
n ≤ un APCR.

• Convergence de
∑
vn où vn = un

1−un . Montrer que vn ∼ un.

30 Attention : ici un n’est pas de signe constant donc le critère
d’équivalence et la majoration ne sont pas permis pour étudier la
convergence. Utiliser le DL de 1

1+x , on obtient un
1+un

= un +wn

où wn = O(u2
n).

31 1. a) Ecrire un+1
un
→ ℓ en revenant à la définition de la limite

puis fixer ε tel que q = ℓ + ε < 1 (par exemple ε = 1−ℓ
2 ).

b) Par récurrence sur n ≥ n0.
c) La b) assure qu’APCR un ≤ Cqn et q ∈ ]−1 ,1[ donc la

série géométrique
∑
qn converge.

2. Appliquer le critère démontré à la question 1 : pour
montrer que

∑
un converge il suffit de montrer que

un+1
un
−→

n→+∞
ℓ < 1.

Ici on obtient un+1
un
−→

n→+∞
1
e .

32 N.B. La suite (un) est décroissante et tend vers 0 (car
∑
un

converge) donc elle est en particulier positive.
1. a) Par hypothèse (Sn) admet une limite finie S.

b) Minorer « l’intérieur » de S2n−Sn =
2n∑

k=n+1

uk à l’aide de

la décroissance de u
2. Il s’agit de montrer que la suite v = (nun) tend vers 0.

La question 2 assure que v2n −→
n→+∞

0.

Par théorème il suffit de montrer que v2n+1 −→n→+∞
0.

On peut adapter la démarche de la question 2 mais
il y a plus rapide en utilisant la décroissance de u :
v2n+1 = (2n+ 1)u2n+1 ≤ (2n+ 1)u2n = v2n +u2n.
Le résultat en découle par encadrement.

33 Suivre d’abord l’indication en montrant que pour β < α, la
suite v = (nβun) est décroissante APCR.
Calculer vn+1

vn
= (1 + 1

n )β un+1
un

.

L’hypothèse de l’énoncé et un DL de (1 + 1
n )β à l’ordre 1

conduisent à vn+1
vn

= 1 + β−α
n + o( 1

n ).

Ainsi vn+1
vn
− 1 ∼ β−α

n < 0.

Ensuite la décroissance APCR de v assure qu’à partir d’un
certain n0 : vn ≤ vn0

ce qui donne une majoration de la forme
un ≤ C

nβ
.

Il suffit de choisir un β ∈ ]1 ,α[ pour assurer la convergence
de

∑ 1
nβ

et donc celle de
∑
un.

34 Par hypothèse Rn =
+∞∑

k=n+1

vk
uk
−→

n→+∞
0.

L’idée est d’exprimer 1
un

n∑
k=0

vk à l’aide de ces restes.

Pour n ≥ 1 : vn
un

= Rn−1 −Rn donc vn = un(Rn−1 −Rn).
Remplacer vn par cette expression, puis en séparer les
sommes, réindexer pour faire apparître Rk dans chaque
somme et regrouper ensuite les sommes. On obtient

1
un

n∑
k=0

vk =
v0

un
+
u1R0

un
−Rn +

1
n

n−1∑
k=1

(uk+1 −uk)Rk︸                 ︷︷                 ︸
an

Les hypothèses de l’énoncé assurent que
v0

un
+
u1R0

un
−→

n→+∞
0 et Rn −→n→+∞

0

Il reste à montrer que an −→n→+∞
0.

Revenir pour cela à la définition de la limite.
Fixer ε > 0 et, vu que Rn −→n→+∞

0, un rang n0 tel que pour

n ≥ n0 : |Rn| ≤ ε.

Ensuite |an| ≤
1
un

n−1∑
k=1

|(uk+1 −uk)Rk |.

Pour n ≥ n0, couper la somme en deux en l’indice k = n0−1 :

•
1
un

n0−1∑
k=1

|(uk+1 −uk)Rk | est de la forme
1
un
×Cst donc il est

de limite nulle et par conséquent majorable par ε à partir
d’un certain rang n1 ≥ n0.

• Dan s
1
un

n−1∑
k=n0

|(uk+1 −uk)Rk |, la croissance de la suite u per-

met d’écrire
|(uk+1 −uk)Rk | = (uk+1 −uk) |Rk | ≤ (uk+1 −uk)ε

et donc par télescopage de majorer le tout par
un−un0

un
ε ≤ ε.

Les considérations précédentes permettent de majorer |an|
par 2ε pour n ≥ n1.
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