Indications

1 | a) Faire apparaitre une série géométrique. Réponse : puis :
i 256 e On calcule I et J (a I'aide d’'une D.E.S pour J)
Up=——
= "3l * On montre que K, et L,, tendent vers 0 en encadrant I'in-
141 térieur (ou on montre qu’elles sont bornées ce qui suffit

b) II s’agit d'une série géométrique de raison g = i ici)
i

+00
Réponse:Zun:Z—i Reponse:Snn_)—+>oo—ln2+\/§ln(1+\/§)
n=0
ein o o 3 | Mettre Inn en facteur puis utiliser le DL de In(1 + x) :
c) Passer en complexe: u,= Im(—). La série est ainsi la 2 1
A Y Uy = Inntaln(ne1)+bin(n+2) = (1 +a+b)Innt o2+ 0(=)
partie imaginaire d’une série géométrique. n n n2
R i 2sin1 ~
éponse : Up= — w
P " 5-4cosl ) !
. n=0 L . e Sil+a+b=0alorsu,~(l+a+b)lnn/ 0.
d) Faire apparaitre une série télescopique avec : . o .
1 | 1 +oo e Sil+a+b=0ie sia+b=-1,alorsu,=w, dou:
n(n—l)zn—l_z' Reponse:ziunzl. °Sia+2b¢0:un~% et Y u, DV.
n=
. .- H -0 - — 1
e) On peut calculer la somme partielle en utilisant les pro- * Sia+2b=0:u,=0(;)et L u, CV.
priétés du logarithme puis en séparant les sommes et en La série convergessi l +a+b=0eta+2b=0ie.a=-2et
simplifiant les termes communs. Pour n > 2 on obtient b=1.
- -1 n+1 1 , . O -1
Z”k = n( ) ~In2. Reponse:: Z”n =-=In2. 4 | N.B.Ici les séries sont de signes constants donc les critéres
k=2 1 5 1 n=2 de convergence par majoration ou équivalence sont licites.
f) Par D.ES. u, = — - a) Convergente : u, ~ €.
.on n+l n-1 . n
On peut ainsi calculer les sommes partielles. b) Convergente: u, ~ 21_n
+00 T e
Réponse : Zun _ 11 c) Convergente u, ~ 577 OU Uy < 5.
= 2 d) Convergente u, ~ —#.
g) Faire apparaitre des séries exponentielles en écrivant e) Grossierement divergente : u, — 1
2 _ 2 . s .
n- = n((n -1)+ 1) au numérateur puis en séparant les f) Divergente : u, ~ 1
— g) Grossierement divergente : u, — 1
sommes. Réponse Zun = 6¢2. S n
h) Convergente : u, ~e™".
n=0 i N ]
h) Faire apparaitre des séries exponentielles en écrivant i) Grossierement divergente.
2 7 . P2 - .
n“=nn-1)+n 301;1 numérateur puis en séparant les j) Divergente: u, > 1.
sommes. Réponse Zu,, = 2e. k) Divergente : u, > 7.
n=0 I) Convergente : u, < zi,,
2 ) Alaide dune D.Er;S. 5 | a) Convergente (somme de deux séries convergente).
1 1 1 1
= — X ——— X — i : ~ 1L
Sy ;2k+1 kel Sk b) Divergente : u, ~
= . 2
La somme n'est pas télescopique. c) Absolument convergente : |u,| < 3
On peut la mettre sous forme intégrale en remplacant d) Grossierement divergente.
1 par Jltzndt ot 1 par Jltndf e) Divergente : u, ~ ﬁ (par quantité conjuguée ou en fac-
' . . i 1
2n+ 1 0 n 0 torisant par v/n puis en utilisant le DL de (1 +x)?)

La somme qui apparait se calcule en faisant apparaitre deux
sommes géométrique.
On obtient finalement, apres simplifications

f) Divergente: u, ~ % (en revenant a ’exponentielle écrire
u, = e’ — 1 et montrer que v, ~ % puis utiliser 1’équi-

1 2n+2 1 n+l valent de e* —1 en 0)
1 t 1 t
su= [ gl S [ S-S
02—t 2n 02—tV ont . ) o
On conclut de facon usuelle en séparant la partie qui dé-| 6 | On peut appliquer la méthode du savoir-faire
pend de 7 : * On revient d l'exponentielle : u, = e'n.
' b2 . . : -
S, = P dt - 75 dt * limv, # —oo : il v a divergence grossiére.
0o t- 0o = s
- * Silimv, = —co, on peut essayer de montrer que nu, — 0 :
! . d . s On revient d Uexponentielle :  nu, = eIV = ¢Wn,
_ b P22 4 4 ! 1 sl gy * Montrer que n’u, — 0 revient d montrer que w, — —co.
2m )y 2-1t2 2m+l )y 2t )
a) Convergente : n<u, — 0.

.3
Ky Ly b) Convergente : u, ~ 12—2” puis n2u, — 0.



c) Convergente : montrer que n’u, — 0.

Pour cela écrire n’u,, sous forme exponentielle
n2uﬂ — eZInnenzln(%) = oWn
Il s’agit alors de montrer que w, — —co.
Pour cela, chercher un équivalent de w,, on trouve
wy, ~—N — —0o0.

d) 2

Convergente : montrer que n-u, — 0.

Pour cela écrire n’u,, sous forme exponentielle
nZun — eZlnnenacos(%)

Il s’agit alors de montrer que w, — —oo.

Pour cela, chercher un équivalent de w,, on trouve

Wy ~ =5 — —oco.

= ew”

Convergente : montrer que n’u, — 0.

Pour cela écrire n’u,, sous forme exponentielle
1’1214” — e2lnne—lnnln(lnn) — oWn
Il s’agit alors de montrer que w, — —oo (factoriser par

Inn)

f) Convergente : montrer que n’u, — 0.

Pour cela écrire n’u, sous forme exponentielle
L
HZun _ eZlnnex/Hln(l n) — oWn
Il s’agit alors de montrer que w, — —oo.
Pour cela, chercher un équivalent de w,, on trouve

\f

n
Wy ~ —1— — —00.
g) Ici:
* u, — 0 donc il n’y a pas divergence grossiére : mais
cela ne permet pas de dire que la série converge

2 — eln n—VIin

* nu, " — 400 mais cela ne permet pas non
plus de dire que la série diverge.

En revanche on montre que nu, — +oo (revenir aux ex-
ponentielles) ce qui assure que ) u, diverge.
7 |a) Convergente : u, ~ ;—2 (factoriser par n3 dans le log dans

le premier terme et par n? dans le deuxiéme terme et
utiliser le DL de In(1 + x))

b) Convergente u, < % dés que n > 2 en majorant judicieu-
n
sement n!.
. ) p o . .
c) Divergente : u, ~ 5. . Revenir a I'exponentielle puis

mettre e en facteur : u, = —e(e’n —1)ou v, = nin(1+ %)—1.
Chercher alors un équivalent de v,,. On trouve v, ~ —21—n
puis utiliser I’équivalent en 0 de e* — 1.
d) Cor}vergente : en utilisant les DL on montre que u, =
O(-5).

e) Divergente : par croissance de I'intégrale (en minorant
I'intérieur) on trouve u, > —*—~ = v, et } v, diverge
1+(2n)2
car v, ~ ——.
23
g |a) Al'aide de DL on trouve
1 .1 1-a
u,=In(l+—-)—asin— = +w,
n n n

ouw, = O(#). Distinguer deux cas :
e Sia=1alors u, = O(nl—z) donc la série est convergente.
* Sia=1,alors u, ~ =2 et la série est divergente.

b) En utilisant Arctann =% —Arctan% on obtient :

1 . 1 1 .
u, =cos(Arctann+ —) = sm(Arctan —— —) =sinv,
na n n%

n
1. On peut toujours séparer termes pairs et impairs : Zak =

k=0 0<2p<n

Ainsi u, ~ v, donc la série est de méme nature que
1_ 1
):Arctarl e

e Sia>1:v,~ % donc la série diverge.
e Sia<l:v,~ —% donc la série diverge.

e Sia=1,avec un DL de Arctan : v, = O(nl—3) donc la
série converge.

9 | 1. Appliquer une formule de Taylor a exp entre O et 1 :

* Option 1. On peut écrire R, = +R,+1 puis majo-

(n+1)!

n+1

1
rer |R,4q| = le! - ZF a l'aide de l'inégalité de Taylor-
k=0""

Lagrange appliqu%e aexpalordre n+1.
n
. . . 1
* Option 2. Exprimer directement R, = [e! — ZF
k=0
la forme d’une intégrale avec la formule de Taylor avec
reste intégral puis chercher un équivalent de l'inté-

grale obtenue par intégration par parties.

n
1
2. Ecrire: e= ZF +R,.
k=0""

sous

10! 1. On peut utiliser le critere d’équivalence pour les séries

a termes positifs :
qg=(2- V3) € ]-1,1[ donc q" — 0 et sin(mtq") ~ ngq"
(terme général positifd'une série géométrique conver-
gente)

2. a) Développer avec la formule du binéme :

n
(24V3) + (2-V3)" = Z(:)wg)kzn—k( L)
k=0 —
0 si k est impair
les termes d’indices impairs se simplifient !, la somme
se réduit aux termes d’indices pairs i.e. les k = 2p :

(2+V3)"+(2-V3)" = ( Z (27;)3P2”—2P)x2 =24,

0<2p<n

A, eN
N.B. Ici on ne peut pas reproduire le raisonnement de la a)
car (2+V3)" /> 0 donc impossible d’utiliser I'équivalent

de sinx X en 0. L’idée est d’exploiter la question a)
X—

pour se ramener d la question 1.

Utiliser laa):  7(2+V3)" = 24,7t - (2-V3)".
Utiliser ensuite la 27t périodicité et I'imparité du sinus
pour se ramener a la question 1.

b)

11! 1. Ce sont les cas «simples»,il ya:

* divergence grossiére si a <0
» convergence absolue si a > 1.

2.a) En simplifiant I'expression on obtient :
1 1
— n — n
vi’l - (_1) ((27’1— 1)0( + (211)0( ) - (_1) al’l
| ——

an
Appliquer alors le théoreme concernant les séries al-
ternées (en vérifiant les conditions sur (a,,)).
b) Montrer que (S;,) et (Sy,41) convergent vers la méme
limite.

azp + Z a2p+1- Dans notre cas le « paquet » des termes impairs est nul

0<2p+1<n

2



* Pour (S,,) : séparer les termes d’indices impairs
k=2p—1etpairsk=2p:
2

n n n n
Sw=) =) Yo+ ) =) Yy
k=1 p=1 p=1 p=1

puis utiliser la question a).

e Pour (82n+1), il suffit d’écrire SZIH—I = SZH + Udptl-

12| Attention, u, n'est pas de signe constant donc :

s , . L
o lecritére d’équivalence n’est pas permis pour étudier la conver-

gence

* on peut par contre utiliser un équivalent sur |u,| pour la

a

b

Cc

d

e

~

~—

~—

~—

~

convergence absolue

S’il n'y a pas convergence absolue, utiliser les DL (cf. )

Pas absolument convergente :  |u,|~ %

Convergente : le DL de In(1 + x) permet d’écrire
-1)" 1

=D +w, ou w,=0(=)
n?

n=

Y u, est donc la somme de deux séries convergentes (une

série alternée + une série justiciable du théoréme de

convergence par domination).

Pas absolument convergente :  |u,|~ %

="
N

Convergente : le DL de tan x permet d’écrire u, =
1

L)

n2

Y u, est donc la somme de deux séries convergentes (une

série alternée + une série justiciable du théoréme de
convergence par domination).

+

w, ou w, = O

Pas absolument convergente :  |u,|~ %
i
Convergente : le DL de tanx permet d’écrire :

0, = <—1>

ol w, = O(-%).
n 2
Y uy, est donc la somme de deux séries convergentes (une

série alternée + une série justiciable du théoréme de
convergence par domination).

S’inspirer de la technique utilisée en cours pour I’Ex.

—1)" R
46, banque INP. On montre que u, = 75( ;) ou
w, = O(%). Cette expression permet de montrer que

) u, converge et qu’il n'y a pas convergence absolue.

Factoriser par y/n puis utiliser le DL de (1 + x)%

. _ 1) 1
On obtient u,, = ot O(n—%)

Cette expression permet de montrer que ) u, converge
et qu’il n'y a pas convergence absolue.

13| Attention, u, n'est pas de signe constant donc :

o lecritére d’équivalence n'est pas permis pour étudier la conver-

gence

* on peut par contre utiliser un équivalent sur |u,| pour la

convergence absolue

* Lorsqu’il n’y a pas convergence absolue : utiliser les DL (voir

a)y Convergence absolue. |u,| ~

)

L doncil y a convergence
n“2

3
absolue ssi a > >

* Convergence L'équivalent ci-dessus montre aussi que la

série diverge grossiérement lorsque a < 3.

14

15

16

17

by

1.

2.

Pour a > %, le DL de shx permet d’écrire

(=1)" 1
n= o1 +O( 3 _L)
nt2 n°972
—_—— — ——
1’771 wn

Y uy, est donc la somme de deux séries convergentes
(une série alternée et une série justiciable du théoréme

de convergence par domination).
Convergence absolue. |u,| ~ = donc il y a convergence

absolue ssi a0 > 1.

Convergence Mettr (_nln)
1
On obtient u, = — _nﬁﬂ)(ﬁ)'
P N —
vn le

La série ) v, est convergente (série alternée).
Ainsi ) u, est de méme nature que } w,. Or: w, ~

ey
: 1
donc } w, CVssia> 3.
a) Divergente : n X ——— — +co0 donc > 1 APCR.
Inn)P (lnn
b) Convergente : (série alternée).
Il n’y a pas convergence absolue : |u,| ~ m
Pour la convergence, factoriser par (1—) puis utiliser le
1 .
DL de 1. On t(rou;:e :
-1 =" 1 1
" lnn+ (=1)n = T Pzt O(Innz)
D S —
Un wy
Avec la question a), ) v, converge et w, ~ T donc

Y w, diverge. La série est donc divergente.

. Il s’agit d’une série télescopique Zln Sp—1 —InS,, il

suffit d’utiliser le théoreme relatif a ce type de série.

Sy
. Remarquer que In 2=L = 1n(1 - ﬂ)
Sn Sn
. Inu,;—Inu, =In “"”
Avec la définition de u,, on trouve : ””:1 = Mln( +37)-
Un DL de In(1 + u) donne <L =1 — (n+1)+O( 5).
S ——
=w,
Un nouveau DL de In(1 + w) donne ensuite
u 1
In(2L) = = 0)
n( uy, ) 2 (nz)

Le résultat de la 1 et un DL de In(1 +x) donne v, = O(%).

Il s’agit de montrer que nu, — C > 0.
Utiliser un télescopage avec la question 2 :

Yke[l,n-1],
En sommant pour k € [1,n—1]] on obtient :
n

In(u,) =Inu; + (ka)—ozln n.

k=1

L

In(upyr)—Inug =vp —aln(l + p

Ainsi In(n%u,) =Inu; + (ka) qui a une limite finie L
k=1

vu que ) vk converge.

Ainsi n%u, — C = el > 0.

La série ) u, est de méme nature que )_ n%



Réponse : y u, CV ssi x> 2. Tous calculs faits on obtient

1—(n+1)t-@ < <1+1—n1’“
18| Il s’agit de la somme d’une série de la forme Z(—l)”an Loa-1 ST a-l .
Conclure ensuite par passage a la limite n — +oo puis enca-

mais (a,) n'est décroissante qu’a partir du rang 1.

y . L S drement (version équivalents) pour a — 1*.
En conséquence, le signe ainsi que la majoration des restes

+00
R, = Z (=1)ka, ne valent que pour n > 1. « Sortir » les | 23 La comparaison série-intégrale, qui s’appuie sur la décrois-
Rm— sance de t ﬁ sur [1,+oo[ pour écrire
R k+1
. . . N 1 1
deux premiers termes de S puis majorer Ry = —1)ka; a Vke N, ——— < dr <
p p J 1 k ,
= (k+1)2+a%> = Jp  t?+a? k2 +a?

permet tous calculs faits de montrer que

1
— Arctan — ) ZkZ s

I'aide du théoréme des séries alternée ( )

1

it —(Arctan nr
a

19| 1. Justifier que f : t — % est prolongeable en une fonc-

tion continue sur [0, nr]. < ! 5+ l(Arc:tan n_ Arctan l)
, ez ez 1+a a a a
2. Découper I'intégrale comme une somme d’intégrales sur Conclure ensuite par passage a la limite n — +oo puis enca-
[k7t, (k + 1)7t] puis effectuer le changement de variable drement pour a — 1*.
t=km+x.

3. Utiliser le théoréme des séries alternées pour justifier

1
Do R . Exploiter la décroissance de t — — sur ]0, +oo[ pour mon-
la convergence. La positivité de la limite s’obtient en 24 P a ] [p

Sk
exprimant la limite en fonction de Ry puis en utilisant trer que pour tout k > 1 : M_}; < J ia dt.
I'encadrement de R; fourni par le théoréme des séries Sk Ser !
alternées. Adapter ensuite la technique de comparaison série-intégrale

u
pour montrer la convergence de ) —r.
S(X

(=D
20| 1. Commencer par montrer que R, + Ryy1 = Z k(k+1)
k=n+1

) ) ) ] ) 25/ 1. La comparaison série-intégrale, qui s’appuie sur la dé-
puis appliquer la majoration des restes fournie par

P . . . croissance de t > ——— sur [2,+oo[ pour écrire
le théoréme des séries alternées ( ) pour majorer (1 nt)

1 k+1 1 1
(k+ 1)(In(k + 1)) SL t(lnt)zdtS k(Ink)2

et permet tous calculs faits de montrer que

— k(k+1)

2. Simplifier R, — R,,;1 puis combiner avec le résultat de 1..

(_1)n+1 1
o(5)

— .
2(n+1) n?

1
< _
;k(lnk)z =222 "2

La série est donc majorée. Puisqu’elle est a termes positif
elle est convergente (par théoréeme).

On obtient: R, =

=D -
21| 1. Remarquer que b, + b, = > (quantité +o0 1
‘/%‘F Vk+1 2. Pour encadrer R, = E m, repartir de I’encadre-
n

conjuguée) pour faire apparaltre une série alternée. Pour

le signe de la limite utiliser la majoration des restes four- ment kil
nie par le théoréme des séries alternées ( ) pour ! gj ! dt < !
= L) (k+1)(In(k +1))2 r t(Int)? k(Ink)?
minorer Ry = _ et suivre le savoir-faire
k=1 Vk+Vk+1 Tous calculs faits on obtient
2. Poser u, =b, + b, et remarquer que : - <R <—
In(n+1) ~ "~ Inn

* La question 1. assure que u, ~ ¢.

\/n+1+ﬁ

qui conduit au résultat demandé.

. _(_1\n
by =(=1) 2 2 26 La décroissance de t +— = sur [1,+oo[ pour écrire
En factorisant par \—0- trer al : <Jk+l dt < -
n factorisant par NG montrer alors que Grp ), B
1 2(-1)" 2”71 u, Fixer d’abord n > 1 et N > n (N est destiné a tendre vers
E N P 0(7) +00) et sommer les inégalités ci-dessus.
—_— Passer ensuite a la limite dans les inégalités pour N — +co.
=w, 1
1 Réponse: R,~—
ce qui permet de montrer que Z— diverge. P " 2n?
by
k+1
" 27! 1. Posant a; = J (k+1—1t)f’(t)dt, on peut montrer que
22| On écrit C(a)= lim S,ous§, = Zk_a puis on encadre S, k
. , e =y Zak converge absolument en majorant les sommes par-
a l'aide d’une comparaison série-intégrale en partant de "
k+1 1 1 .
Vk e N*, SJ S dr< — tielles Z|ak|parM.
ke =), B9k =



Ensuite la décroissance APCR de v assure qu’a partir d'un

certain ng : v, < v, ce qui donne une majoration de la forme
— C

pour ke [0,n—1]). up < 5.

k+1
2. Intégrer f (k+1—1t)f’(t)dt par parties puis sommer
k

I1 suffit de choisir un € |1, a[ pour assurer la convergence
; 2
28) 1. Développer 0 < (|a| - [])". de ) ﬁ et donc celle de ) u,.

2. La 1 assure que ) u,v, converge absolument.
3. Il s’agit de montrer que

+00

. ) , Par hypothése R,, = Z e 0.
+ E posséde la suite nulle u = (0),ey i.e. que Y 0° 34 Yp " = Uk n—+oo
=n
converge. n
o o dai : L'idée est d’exprimer -} v} a l'aide de ces restes
* E est stable par combinaison linéaire. Fixer u,v € E et p iy k :
A, p € R et montrer que w = Au+ pv € E. . %_p k:?{ q R R
Il s’agit de montrer que la série Y} w2 converge : déve- ournz1l: gh=Ry1—Ry ONe Vp = ”ff( n-l n)-
lopper w? et justifier la convergence de tous les mor- Remplacer v, par cette expression, puis en séparer les
ceaux. sommes, réindexer pour faire apparitre Ry dans chaque
somme et regrouper ensuite les sommes. On obtient
29| La série est a termes positifs donc on peut utiliser tous 1 & vy uRg R 1l R
les critéres de comparaison (y compris inégalités et équiva- u, Vk = u, + u, " T (t1g41 = )Ry
lents). k=0 k=1
s Convergence de Y u?2. Deux possibilités (au moins) : an
« Méthode 1 : On justifie que u2 = o(u,) Les hypothéses de I’énoncé assurent que
: 5 =o0(uy).
; e vp  uR
 Meéthode 2 : On justifie que u2 < u, APCR. i L 0 et R, — O
N u un L{n n—+oo n—+oo
* Convergence de } vy, oil v, = 7—-. Montrer que v, ~ u,. Il reste & montrer que a, —> 0.
n—+oo

A . . , e si J ; . Revenir pour cela a la définition de la limite.
30 ”ttm?tzon DICl Uy n e.st p%zs e signe constan? onc /e cr.ztere Fixer ¢ > 0 et, vu que R, —> 0, un rang ny tel que pour
d’équivalence et la majoration ne sont pas permis pour étudier la n—-+oo

convergence. Utiliser le DL de ﬁ, on obtient 1«1:74,1 =u,+w, n2ng: Ryl < 6;1.—1
ot w, = O(uy). Ensuite |a,| < %Zl(ukﬂ — ug) Ry
31| 1.a) Ecrire “Z:l — Cenrevenant a la définition de la limite Pour 1 > ng, Counp];?]a somme en deux en l'indice k = ng—1 :
puis fixer ¢ tel que g =€+ ¢ <1 (par exemple ¢ = 1—55). no=1 1 .
b) Par récurrence sur n > ny. y w ]; |(uk41 — ug)Rg| est de la forme w x Cst donc il est

c) Lab)assure quAPCR u, < Cq" etge]-1,1[ doncla
série géométrique ) q" converge.
2. Appliquer le critéere démontré a la question 1 : pour

de limite nulle et par conséquent majorable par ¢ a partir
d’un certain rang n; > n.

n—1
montrer que Y u, converge il suffit de montrer que . .
Ut que )ty & q * Dans— } [(ug1 — ug)Rg|, la croissance de la suite u per-
ol 5 <], uy,
Un p—too k=ng
Ici on obtient 2L —s 1, met d’écrire
n np—+4oco

(41 = wi) Ril = (irr = up) IRk | < (ueer — 1g)e
32| N.B. La suite (u,) est décroissante et tend vers 0 (car }_u, et donc par télescopage de majorer le tout par %E <e.
converge) donc elle est en particulier positive.
1.a) Par hypothése (S,) admet une limite finie S.
2n
b) Minorer « I'intérieur » de S,,—S,, = Z uy al’aide de

k=n+1

Les considérations précédentes permettent de majorer |a,|
par 2¢ pour n > ny.

la décroissance de u

2. Il s’agit de montrer que la suite v = (nu,) tend vers 0.

La question 2 assure que v, —> 0.
n—+oo

Par théoréme il suffit de montrer que v5,,; — 0.
n—+oo

On peut adapter la démarche de la question 2 mais
il y a plus rapide en utilisant la décroissance de u :
Vapp1 = (204 Dy < (204 1)ugy = vay + gy

Le résultat en découle par encadrement.

33| Suivre d’abord 'indication en montrant que pour < a, la
suite v = (nfu,,) est décroissante APCR.
Calculer v;—:l =(1+ %)ﬂ“{;—;l
L’hypothése de I'énoncé et un DL de (1 + %)/’) a l'ordre 1
conduisent a <2+l =1 + ﬁ%a +o(d).

.. B
A1n51v;—“—1~/7a<0.
n



