
26
Approximations Indications

1 Faire apparaître des sommes de Riemann.

1. On trouve vn −→n→+∞

∫ 1

0

t

1 + t2 dt

Reste ensuite à calculer l’intégrale.
2. ln(wn) est une somme de Riemann.

On trouve lnwn −→n→+∞

∫ 1

0
ln(1 + t)dt.

Reste ensuite à calculer l’intégrale, puis à prendre l’ex-
ponentielle de la valeur obtenue.

Réponse finale : wn −→n→+∞
4
e

.

3. Faire apparaître une somme de Riemann en posant
k = n + j. (On peut aussi procéder par comparaison
somme-intégrale).

Réponse. tn −→n→+∞
1
2

2 Réponse Sn ∼
2
3
n

3
2 .

3 On peut se ramener à une somme de Riemann de la fonc-
tion f g en écrivant :

g(
k + 1
n

) = g(
k

n
) +

(
g(

k + 1
n

)− g(
k

n
)
)

On a alors

un =
1
n

n−1∑
k=0

f
( k
n

)
g
( k
n

)
︸             ︷︷             ︸

vn

+
1
n

n−1∑
k=0

f
( k
n

)(
g
(k + 1

n

)
− g

( k
n

))
︸                              ︷︷                              ︸

rn

• vn est une somme de Riemann : vn→
∫ 1

0
f g

• Il reste à montrer que rn tend vers 0.
Avec l’inégalité triangulaire, on peut majorer |rn| en utili-
sant une inégalité du type :∣∣∣∣∣g(k + 1

n

)
− g

( k
n

)∣∣∣∣∣ ≤M × 1
n

Pour cela, commencer par appliquer l’inégalité des ac-
croissements finis à la fonction g (en justifiant que g ′ est
bornée)

4 Fixer r < {±1}.

I =
∫ π

0
f (θ)dθ où la fonction f : θ 7→ ln(r2 − 2r cosθ + 1)

est définie sur [0 ,π].
Par le théorème sur les sommes de Riemann I = lim

x→+∞
Sn où

Sn =
π

n

n−1∑
k=0

f
(kπ
n

)
=
π

n
ln

(n−1∏
k=0

(r2 − 2r cos
kπ

n
+ 1)

)
Reste à calculer le produit :

n−1∏
k=0

(r2 − 2r cos
kπ

n
+ 1).

Pour cela factoriser dans R[X] le polynôme X2n − 1.

On trouve :
n−1∏
k=0

(r2 − 2r cos
kπ

n
+ 1) = (r2n − 1)× r − 1

r + 1
.

Il suffit enfin de calculer la limite de la quantité obtenue
lorsque n→ +∞.
Distinguer les cas |r | > 1 et |r | < 1 on trouve :

lim
x→+∞

Sn =

0 si |r | < 1
π lnr2 si |r | > 1

5 1. Fixer n ≥ 1 et k ∈ ⟦0 ,n⟧ et appliquer le théorème de la bi-

jection à F : x 7→
∫ x

a
f (t)dt pour assurer l’existence d’une

unique solution à l’équation F(x) =
k

n
I avec I =

∫ b

a
f .

2. En remarquant au départ que

µn =
1

n+ 1

n∑
k=0

F−1
( k
n
I
)

on peut faire apparaître une somme de Riemann de F−1

et ainsi obtenir

µn −→n→+∞
1
I

∫ I

0
F−1(y)dy (où I =

∫ b

a
f )

Le résultat demandé s’obtient en effectuant le change-
ment de variable y = F(t) dans l’intégrale.

6 a) Il s’agit d’une somme de Riemann de la fonction f :

t 7→ t ln t sur ]0 ,1], prolongée par continuité en posant

f (0) = 0. La limite est l’intégrale
∫ 1

0
t ln tdt.

L’intégrale se calcule par intégration par parties mais la
fonction ln n’est pas C 1 sur [0 ,1] (problème en 0).

Pour faire les calculs proprement, calculer
∫ 1

ε
t ln tdt

pour ε ∈ ]0 ,1[ par IPP puis faire tendre ε vers 0 dans
le résultat obtenu.
Réponse : −1

4
b) En écrivant k = k

n × n on fait apparaître la somme de la
première question :

n∑
k=1

k lnk = n2×
(1
n

n∑
k=1

k

n
ln

k

n

)
︸          ︷︷          ︸

=− 1
4 +o(1)

+
n(n+ 1)

2
lnn︸         ︷︷         ︸

= n2
2 lnn+o(n2)

= −n
2

4
+
n2 lnn

2
+o(n2)

7 Ecrire l’intégrale comme limite d’une somme de Riemann :

1
b − a

∫ b

a
f (x) = lim

n→+∞
Sn où : Sn =

1
n

n∑
k=1

f
(
a+

b − a
n

)
.

Par l’inégalité de Jensen : Sn ≥ f
(1
n

n∑
k=1

(
a+

b − a
n

))
Calculer la somme

1
n

n∑
k=1

(
a +

b − a
n

)
puis passer à la limite

dans l’inégalité précédente.

8 1. a) En écrivant :

n
n∑

j=1

ujvj =
n∑
i=1

n∑
j=1

ujvj et
( n∑
j=1

uj

)( n∑
j=1

vj

)
=

n∑
i=1

n∑
j=1

uivj

la différence vaut :
∑

1≤i,j≤n
(uj −ui)vj

séparer la somme en deux
∑

1≤i<j≤n
et

∑
1≤j<i≤n

puis

renommer (i, j) en (j, i) dans la deuxième somme
(indices muets) et regrouper de nouveau les deux
sommes.

b) Par hypothèse : (uj −ui)(vj − vi) ≥ 0 lorsque i ≤ j.
2. Faire apparaître des somme de Riemann en appliquant le

résultat de1b) avec uk = f
(
a+k

b − a
n

)
et vk = g

(
a+k

b − a
n

)
puis passer à la limite.



9 Fixer x ∈ [0 , π2 ] et appliquer la formule de Taylor à reste
intégral à sin entre 0 et x à l’ordre 3 puis à l’ordre 5.

10 Appliquer l’inégalité de Taylor-Lagrange à f : x 7→ ln(1 + x)
entre 0 et 1.
Il s’agit de calculer

∣∣∣f (n+1)
∣∣∣ puis d’en trouver un majorant

Mn+1.

On trouve f (n+1)(x) =
(−1)nn!

(1 + x)n+1 donc on peut prendre

Mn+1 = n!.

11 a) Appliquer l’inégalité de Taylor-Lagrange

b) En écrivant : sin
kπ

n2 =
kπ

n2 +
(
sin

kπ

n2 −
kπ

n2

)
on obtient

un =
(1
n

n∑
k=1

πk

n
sin

kπ

n

)
︸                 ︷︷                 ︸

Sn

+
(1
n

n∑
k=1

πk

n
sin

kπ

n

(
sin

kπ

n2 −
kπ

n2

))
︸                                    ︷︷                                    ︸

Rn

Dès lors :

• On calcule la limite de Sn en utilisant les sommes de
Riemann de x 7→ x sinx sur [0 ,π].

• On montre que Rn→ 0 en majorant |Rn| avec la ques-

tion a) qui permet de majorer
∣∣∣∣∣kπn2 − sin

kπ

n2

∣∣∣∣∣
Réponse : un −→n→+∞

1

12 a) Appliquer l’inégalité de Taylor-Lagrange à exp entre 0

et x à l’ordre n = 1.
b) En vue d’appliquer la question a), écrire :

e
1

n+k =
(
e

1
n+k − 1− 1

n+ k

)
+
(
1 +

1
n+ k

)
Ce qui donne :

un =
n∑

k=1

(
e

1
n+k − 1− 1

n+ k

)
︸                    ︷︷                    ︸

Rn

+
n∑

k=1

1
n+ k︸    ︷︷    ︸
Sn

Ensuite :

• La question a) permet de majorer |Rn| e de montrer que
Rn −→n→+∞

0.

• On fait apparaître une somme de Riemann pour calcu-
ler la limite de Sn.

Réponse : vn −→n→+∞
ln2

13 Appliquer la formule de Taylor avec reste intégral à l’ordre
n− 1 et minorer le reste intégral avec l’hypothèse sur f (n).

14 a) Appliquer l’inégalité de Taylor-Lagrange à sin entre 0 et

x à l’ordre n = 2 pour majorer |sinx − x| puis substituer x

par
1
n

sin t.

b) En vue d’appliquer la question a), écrire :

sin
(1
n

sin t
)

=
(
sin

(1
n

sin t
)
− 1
n

sin t
)

+
(1
n

sin t
)

Ce qui donne :

un = n

∫ π

0

(
sin

(1
n

sin t
)
− 1
n

sin t
)

dt︸                                ︷︷                                ︸
Kn

+
∫ π

0
sin tdt

La question a) permet de majorer |Kn| et de montrer que
Kn −→n→+∞

0.

Réponse : un −→n→+∞
2

15 a) Fixer x > 0 et appliquer l’inégalité de Taylor-Lagrange à

l’ordre 1 :
• Entre x et x+ h pour majorer :

∣∣∣f (x+ h)− f (x)− hf ′(x)
∣∣∣︸                         ︷︷                         ︸

=|A|

• Entre x et x − h pour majorer :
∣∣∣f (x − h)− f (x) + hf ′(x)

∣∣∣︸                         ︷︷                         ︸
=|B|

Ajouter les deux inégalité obtenues puis utiliser les in-
égalités triangulaires en commençant par

|A|+ |B| ≥ |B−A|

b) Etudier la fonction ϕ : h 7→ M0

h
+
hM2

2
.

16 La suite (Sn) est croissante.
En appliquant l’inégalité de Taylor-Lagrange entre a et

x ∈ [0 ,1], montrer que M0 ≤
Mk

k!
pour tout k ∈N.

Conclure ensuite en utilisant le fait que
n∑

k=0

1
k!
−→

n→+∞
e.

17 Ecrire un comme l’intégrale d’une somme en utilisant
1

2k + 1
=

∫ 1

0
t2k dt.

La somme qui apparaît se calcule en faisant apparaître une
somme géométrique.

On obtient : un =
∫ 1

0

1
1 + t2 dt + (−1)n

∫ 1

0

t2n+2

1 + t2 dt︸        ︷︷        ︸
Kn

.

Il reste :

• A calculer
∫ 1

0

1
1 + t2 dt

• A montrer que Kn −→n→+∞
0 en encadrant l’intérieur.

Réponse : un −→n→+∞
π

4

18 1. Ecrire Sn comme l’intégrale d’une somme en utilisant

x2k+1

2k + 1
=

∫ x

0
t2k dt.

La somme qui apparaît se calcule en faisant apparaître
une somme géométrique.

2. On obtient : Sn =
∫ x

0

1
1 + t2 dt + (−1)n

∫ x

0

t2n+2

1 + t2 dt︸        ︷︷        ︸
Kn

.

Il reste :

• A calculer
∫ x

0

1
1 + t2 dt

• A montrer que Kn −→n→+∞
0 en encadrant l’intérieur.

Réponse : Sn −→n→+∞
Arctanx

19 1. Mettre la somme sous forme intégrale en utilisant

1
a+ kb

=
∫ 1

0
ta−1+kb dt.

La somme qui apparaît se calcule en faisant apparaître
une somme géométrique.
On obtient finalement

n∑
k=0

(−1)k

a+ kb
=

∫ 1

0

ta−1

1 + tb
+ (−1)n

∫ 1

0
ta−1 t

(n+1)b

1 + tb
dt︸               ︷︷               ︸

Kn

2



Il reste à montrer que Kn −→n→+∞
0 en encadrant l’inté-

rieur.

2. La 1. assure que la limite existe et vaut I =
∫ 1

0

1
1 + t3 dt.

On calcule I par une D.E.S :

• D.E.S.
1

1 +X3 =
1
3

1
1 +X

+
1
3
−X + 2

X2 −X + 1
• On primitive les morceaux, pour le second faire appa-

raître u′
u :

t − 2
t2 − t + 1

=
1
2

2t − 4
t2 − t + 1

=
1
2

2t − 1
t2 − t + 1︸    ︷︷    ︸

u′
u

−3
2

1
t2 − t + 1︸    ︷︷    ︸

forme canonique

20 A l’aide d’une D.E.S.

Sn =
1
2

n∑
k=1

1
3k − 1

− 1
3k + 1

La somme n’est pas télescopique.
On peut la mettre sous forme intégrale en remplaçant

1
3k − 1

par
∫ 1

0
t3k−2 dt et

1
3k + 1

par
∫ 1

0
t3k dt.

La somme qui apparaît se calcule en faisant apparaître une
somme géométrique.
On obtient finalement, après simplifications

Sn =
1
2

∫ 1

0

t + t2

1 + t + t2 (1− t3n)dt

On conclut de façon usuelle en séparant la partie qui dé-
pend de n :

Sn =
1
2

(∫ 1

0

t + t2

1 + t + t2 dt︸             ︷︷             ︸
I

−
∫ 1

0

t + t2

1 + t + t2 × t
3n dt︸                    ︷︷                    ︸

Kn

)

puis :

• On calcule I à l’aide d’une D.E.S

• On montre que Kn tend vers 0 en encadrant l’intérieur

Réponse : Sn −→n→+∞
1
2
− π

6
√

3

21 La comparaison somme-intégrale, qui s’appuie sur la dé-

croissance de t 7→ 1
tα

pour écrire

1
(k + 1)α

≤
∫ k+1

k

1
tα

dt ≤ 1
kα

permet tous calculs faits de montrer que
(n+ 1)1−α − 1

1−α
≤ Sn ≤ 1 +

n1−α − 1
1−α

Réponse : Sn ∼
n1−α

1−α

22 1. On écrit lnn! =
n∑

k=1

lnk puis on effectue une comparai-

son somme-intégrale en partant de

lnk + 1 ≤
∫ k+1

k
ln tdt ≤ lnk

Tous calculs faits on obtient
n lnn−n+ 1 ≤ lnn! ≤ (n+ 1)ln(n+ 1)−n

Il suffit de montrer que les deux quantités obtenues dans
l’encadrement sont équivalentes à n lnn.

2. Traduire l’équivalent : n! ∼ nne−n
√

2πn
en : n! =

n→+∞
nne−n

√
2πn

(
1 + o(1)

)
puis passer au lo-

garithme.

23 La comparaison somme-intégrale, qui s’appuie sur la dé-
croissance de t 7→ 1

t ln t sur [2 ,+∞[ pour écrire
1

(k + 1)ln(k + 1)
≤

∫ k+1

k

1
t ln t

dt ≤ 1
k lnk

permet tous calculs faits de montrer que

ln(lnn+ 1)− ln(ln2) ≤
n∑

k=2

1
k lnk

≤ ln(lnn)− ln(ln2) +
1

2ln2

Il suffit de montrer que les deux quantités obtenues dans
l’encadrement sont équivalentes à ln(lnn).

24 1. a) Deux possibilités :

• Procéder par intégration par parties en primitivant
t 7→ 1 en t 7→ t − k + 1.

• Appliquer la formule de Taylor à reste intégral à
l’ordre 1 à une primitive F de f sur [k ,k + 1].

b) Sommer l’égalité du 1a) pour k ∈ ⟦1 ,n⟧.

2. Appliquer le résultat de 1b) à la fonction f : t 7→ eiα ln t

t

et calculer les intégrales
∫ n+1

1
f et

∫ n+1

1

∣∣∣f ′∣∣∣
25 1. a) Il n’est pas utile de calculer l’intégrale, la décrois-

sance de t 7→ 1
t

sur [1 ,+∞[ permet d’écrire

1
n
≤

∫ n

n−1

1
t

dt ≤ 1
n− 1

b) Utiliser le théorème de la limite monotone :

• La positivité des ak donne la croissance de (An)
• La majoration de a) permet de majorer An.

2. En écrivant
1
k

=
∫ k

k−1

1
t

dt − ak pour k ≥ 2 puis en som-

mant (et en utilisant Chasles), on obtient
Hn = lnn+ 1−An

La suite (1−An) est convergente, en notant γ sa limite,
on obtient le résultat demandé.

26 1. Suivre la méthode du SF 14 . Pour n ≥ 2, considérer

An =
∫ n

1

ln t

t
dt −

n∑
k=1

lnk

k
=

n∑
k=2

(∫ k

k−1

ln t

t
dt − lnk

k︸                ︷︷                ︸
ak

)

• La décroissance de t 7→ ln t

t
sur [e ,+∞[ permet

d’écrire, pour tout k ≥ 4 : 0 ≤ ak ≤
ln(k − 1)
k − 1

− lnk

k
• L’encadrement précédent permet de montrer que (An)

est croissante (à partir du rang 3) et majorée, donc
convergente.

Sachant que :
n∑

k=1

lnk

k
=

(lnn)2

2
−An

le résultat demandé s’obtient en posant ℓ = lim
n→+∞

(−An).

2. Séparer les termes d’indices pairs k = 2p et impairs
k = 2p+ 1 :

2n∑
k=1

(−1)k
lnk

k
=

n∑
p=1

ln(2p)
2p

−
n−1∑
p=0

ln(2p+ 1)
2p+ 1

De même
n−1∑
p=0

ln(2p+ 1)
2p+ 1

=
2n∑
k=1

lnk

k
−

n∑
p=1

ln(2p)
2p

3



Ce qui donne
2n∑
k=1

(−1)k
lnk

k
= 2

n∑
p=1

ln(2p)
2p

−
2n∑
k=1

lnk

k

Dans le premier terme du membre de droite, écrire en-
suite ln(2p) = ln2 + lnp puis séparer la somme et simpli-
fier les termes en commun avec le dernier terme.

3. Avec la question 2. :
2n∑
k=1

(−1)k
lnk

k
= ln2

n∑
k=1

1
k︸︷︷︸

Hn

−
2n∑

k=n+1

lnk

k︸     ︷︷     ︸
S2n−Sn

Il suffit d’utiliser :
• le fait que Hn = lnn+γ + o(1)

• le résultat Sn =
n→+∞

(lnn)2

2
+ ℓ + o(1) (avec n et 2n) .

Ce qui précède assure la convergence de la sous-suite( 2n∑
k=1

(−1)k
lnk

k

)
des termes d’indice pairs vers la limite

voulue. Reste ensuite à montrer que la sous-suite des
termes d’indices impairs converge vers cette même li-
mite.

27 1. Utiliser H4n+4 =
4n+4∑
k=1

1
k

pour réexprimer

Sn =
n∑

k=1

1
4k + 1

− 3
4k + 2

+
1

4k + 3
+

1
4k + 4

Pour cela, séparer H4n+4 en quatre paquets selon que les
indices soient de la forme 4k + 1, 4k + 2, 4k + 3 ou 4k + 4 :

H4n+4 =
n∑

k=0

1
4k + 1

+
n∑

k=0

1
4k + 2

+
n∑

k=0

1
4k + 3

+
n∑

k=0

1
4k + 4

La somme de l’énoncé s’écrit alors :

Sn = H4n+4 − 4
n∑

k=0

1
4k + 2

= H4n+4 − 2
n∑

k=0

1
2k + 1

En séparant de même les termes d’indices pairs et im-
pairs dans H2n+1 on obtient finalement :

Sn = H4n+4 − 2H2n+1 +Hn
Conclure en utilisant Hn =

n→+∞
lnn+γ + o(1)

2. Mettre Sn sous forme intégrale en remplaçant les quatre

fractions par des intégrales via
1

α + 1
=

∫ 1

0
tα dt.

La somme qui apparaît se calcule en faisant apparaître
une somme géométrique.
On obtient finalement, après factorisation et simplifica-
tion du facteur commun (1− t) :

Sn =
∫ 1

0

t2 + 2t − 1
(1 + t)(1 + t2)

(t4n+4 − 1)dt

On conclut de façon usuelle en séparant la partie qui
dépend de n :

Sn = −
∫ 1

0

t2 + 2t − 1
(1 + t)(1 + t2)

dt︸                   ︷︷                   ︸
I

+
∫ 1

0

t2 + 2t − 1
(1 + t)(1 + t2)

× t4n+4 dt︸                             ︷︷                             ︸
Kn

puis :
• On calcule I à l’aide d’une D.E.S : on trouve I = 0
• On montre que Kn tend vers 0 en encadrant l’intérieur

28 1. A n fixé, appliquer le théorème des valeurs intermé-

diaires strictement monotone à fn : x 7→ xn + x sur ]1 ,2].

2. La suite (xn) est décroissante. Pour cela, calculer fn+1(xn)
et montrer : fn+1(xn) ≥ 0 = fn+1(xn+1).
La suite (xn) converge donc vers ℓ ≥ 1. Montrer que ℓ = 1
en prenant la limite dans la relation xnn + xn = 3.

3. a) En passant la relation xnn+xn = 3 au logarithme puis en
utilisant xn = 1+δn on obtient : n ln(1+δn) = ln(2−δn).
Il reste à remplacer chaque membre de l’égalité par
un équivalent.

b) Il s’agit de montrer que : δn −
ln2
n
∼ ln2(ln2− 1)

2n2 .

En repartant de l’égalité ln(1 + δn) =
1
n

ln(2− δn) et en

développant chaque terme jusqu’à la précision o
( 1
n2

)
:

• ln(1 + δn) = δn −
(ln2)2

2n2 + o
( 1
n2

)
•

1
n

ln(2− δn) =
ln2
n
− ln2

2n2 + o
( 1
n2

)
Reste à égaler les deux expressions ci-dessus.

29 1. A n fixé, appliquer le TVI strictement monotone à la

fonction f : x 7→ tanx − c

x
sur ]nπ ,nπ+

π

2
[.

2. Utiliser l’encadrement : nπ ≤ xn ≤ nπ+
π

2
.

Réponse : xn ∼ nπ.

3. a) δn ∈ ]−π
2
,
π

2
[ donc δn = Arctan(tanδn).

Remplacer alors tanδn en utilisant δn = xn −nπ puis

tanxn =
c

xn
et enfin Arctanu ∼

u→0
u combiné avec

l’équivalent de xn trouvé.

b) Repartir de δn = Arctan
c

xn
= Arctan

c

nπ+ δn
et déve-

lopper Arctan
c

nπ+ δn
à la précision o

( 1
n3

)
:

• Sachant que δn ∼
c

nπ
commencer par montrer que

c

nπ+ δn︸   ︷︷   ︸
vn

=
c

nπ
− c2

(nπ)3 + o
( 1
n3

)
.

• Utiliser ensuite Arctanvn = vn −
1
3
v3
n + o(v3

n).

30 1. Pour n ≥ 1 fixé, appliquer le TVI strictement monotone

à f : x 7→ x2n − 2nx+ 1 sur ]1 ,+∞[.

2. Pour montrer que Pn
(
1+

1
√
n

)
≥ 0, minorer

(
1+

1
√
n

)2n
en

ne gardant que les trois premiers termes dans la formule
du binôme.
Comparer ensuite 1 +

1
√
n

et xn (Pn est croissante sur

[1 ,+∞[) et conclure par encadrement.
3. a) En passant l’égalité x2n

n = 2nxn − 1 au logarithme on

obtient ln(1 + εn) =
lnn

2n
+

ln2
2n

+
1

2n
ln

(
xn −

1
2n

)
:

• Dans le membre de gauche ln(1 + εn) ∼ εn
• Dans le membre de droite, l’équivalent est le « plus

gros » des trois termes (montrer que les deux autres

sont des o
( lnn

n

)
.

b) Repartir de ln(1 + εn) =
lnn

2n
+

ln2
2n

+
1

2n
ln

(
xn −

1
2n

)
︸             ︷︷             ︸

=o( 1
n )

et
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développer le membre de gauche jusqu’à la précision

o
(1
n

)
(faire un DL2 de ln(1 + εn)).

31 1. A n fixé, l’équation ex = xn équivaut pour x , 1 à
x

lnx
= n. Etudier alors les variations de f : x 7→ x

lnx
.

2. a) La relation f (xn) = n permet d’écrire xn = g(n) où g
est la réciproque de la fonction f|]1 ,e[.
La monotonie et la limite de (xn) découle des varia-
tions de g qui est décroissante et vérifie lim

y→+∞
g(y) = 1

(d’après le théorème de continuité des fonctions réci-
proques et le TVI strictement monotone)

b) Il s’agit de trouver un équivalent de εn = xn − 1.

L’égalité ln(xn) =
xn
n

permet d’écrire ln(1 + εn) =
xn
n

.

Remplacer alors chaque membre par un équivalent.

Réponse : εn ∼
1
n

.

c) Il s’agit de montrer : εn =
1
n

+
3

2n2 + o
( 1
n2

)
.

En repartant de l’égalité ln(1+εn) =
1
n

(1+εn) et en dé-

veloppant chaque membre jusqu’à la précision o
( 1
n2

)
• ln(1 + εn) = εn −

1
2n2 + o

( 1
n2

)
•

1
n

(1 + εn) =
1
n

+
1
n2 + o

( 1
n2

)
Reste à égaler les deux expressions ci-dessus.

3. a) Utiliser yn = h(n) où h est la réciproque de la fonction
f|]e ,+∞[ et procéder comme en 2a).
Réponse : yn −→n→+∞

+∞

b) Passer l’égalité eyn = ynn au logarithme : yn = n lnyn.
Reste à montrer que lnyn ∼ lnn.
Pour cela, passer à nouveau au logarithme :

(⋆) lnyn = lnn+ ln(lnyn)
et montrer que ln(lnyn) = o

(
lnyn

)
.

c) Repartir de l’égalité yn = n lnyn =
⋆
n lnn+n ln(lnyn).

Il reste à montrer que ln(lnyn) ∼ ln(n lnn) c’est à dire
que l’équivalent de 3b) ln(yn) ∼ n lnn « passe au loga-
rithme » (montrer par exemple que le quotient tend
vers 1).

32 1. A α > 0 fixé, appliquer le TVI strictement monotone à

fα : x 7→ e
1
x − xα sur R∗+.

2. Etant donnés α < β, il s’agit de comparer xα et xβ . Pour
cela calculer fβ(xα) et montrer que fβ(xα) < 0 = fβ(xβ)
puis utiliser la décroissance de fβ .
La décroissance de α 7→ xα et le fait que les xα sont tous
supérieurs à 1 assure l’existence de ℓ = lim

α→+∞
xα et ℓ ≥ 1.

Montrer que ℓ = 1 en faisant tendre α vers +∞ dans
l’égalité e1/xα = xαα .

3. Posant δα = xα − 1 il s’agit de montrer que δα =
α→+∞

1
α
− 1

2α2 + o
( 1
α

)
.

Commencer par prendre le logarithme de l’égalité véri-
fiée par xα pour obtenir :

(⋆) ln(1 + δα) =
1
α
× 1

1 + δα
Puis :

• Montrer d’abord que δα ∼
1
α

en considérant des équi-

valents dans (⋆)
• Développer ensuite chaque membre de (⋆) à la préci-

sion o
( 1
α2

)
.
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