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Approximations

Faire apparaitre des sommes de Riemann.
1
t
1. On trouve v, — dt
n—+oo Jo 1+1t2

Reste ensuite a calculer I'intégrale.
In(w,) est une somme de Riemann.
1

On trouve Inw,, — In(1 +t)dt.
n—+oco

Reste ensuite a calculer I'intégrale, puis a prendre 1'ex-

ponentielle de la valeur obtenue.
4

Réponse finale : w, — —
p ﬁ nn—)+00 e

Faire apparaitre une somme de Riemann en posant
k = n+j. (On peut aussi procéder par comparaison
somme-intégrale).

_ -

Réponse. t
P "y stoo 2

o)

2
Réponse S, ~ 312

On peut se ramener a une somme de Riemann de la fonc-
tion fg en écrivant :
e T I LS ETLS)
On a alors | !
I ky ky 1 ok okt k
=2 S E () e(0)
Un n

* v, est une somme de Riemann : v,, — J fg
0

* Il reste a montrer que r, tend vers 0.
Avec I'inégalité triangulaire, on peut majorer |r,| en utili-
sant une inégalité du type :

k+1 k
o) ()
Pour cela, commencer par appliquer 'inégalité des ac-

croissements finis a la fonction g (en justifiant que ¢’ est
bornée)

1
<Mx—
s Mx— 7

Fixer r ¢ {+1}.
s

1= f(6)dO ou la fonction f : 0 > In(r?> — 2rcos6 + 1)

0
est définie sur [0, 7t].
Par le théoréme sur les sommes de Riemann [ = lim S,, ou

X—+00
n-1

St

k=0
n—1

k
l_[(r - 2rcos—n +1).
k=0 "
Pour cela factoriser dans R[X] le polyndme X?" — 1.

n-1

k -1
On trouve : | |(r2—2rcos—n+1):(r2”—1)>< r+1.
n r

k=0
I1 suffit enfin de calculer la limite de la quantité obtenue

lorsque n — +co.

Distinguer les cas |r| > 1 et |r| < 1 on trouve :
0 sifr]<1
sir]>1

8

(r —2rcos—+1))

Reste a calculer le produit :

mtlnr?

1. Fixern > 1 etk € [0,n] et appliquer le théoréme de la bi-

< Ivk. k
2 2 2 =t
k_lklnk_n x( lnn)+ 3 Inn >

Indications

jectiona F: x> J f(t)dt pour assurer l'existence d’une

k b
unique solution a I’équation F(x) = —I avec I = J f.
n a

2. En remarquant au départ que

Hn =

n
k
FY(=I
) FG)
k=0
on peut faire apparaitre une somme de Riemann de F~!
et ainsi obtenir

n+1

b
—1
Pn 20T (v)dy f)

Le résultat demandé s'obtient en effectuant le change-
ment de variable y = F(t) dans I'intégrale.

(ou I=

6 |a) Il s’agit d’'une somme de Riemann de la fonction f :

t+ tint sur ]0,1], prolongée par continuité en posant
1
f(0) = 0. La limite est I'intégrale j tintdt.
0
L'intégrale se calcule par intégration par parties mais la

fonction In n’est pas ¢! sur [0,1] (probléme en 0).
1

tintdt
&
pour ¢ € ]0,1[ par IPP puis faire tendre ¢ vers 0 dans

le résultat obtenu.

Pour faire les calculs proprement, calculer

Ré =
éponse : —

b) En écrivant k = % x n on fait apparaitre la somme de la

premiére question :

n(n+1) n> n?lnn

+0(n2)

kzl ——
| —
—ﬁlnn+o(n2)
-2

Ecrire I'intégrale comme limite d’'une somme de Riemann :
1 b 1y b—a
iy o)
Par I'inégalité de Jensen: S, > Ly b-a
5 sz (5) ()

1 a . N -
Calculer la somme ZZ({Z + T) puis passer a la limite
k=1
dans I'inégalité précédente.

= ou: =

lim S,

n—+00

1.a) En écrivant :

Z”J”l ZZ”J”J °t (
i=1 j=1 j=1 j=1 i=1j=1
la différence vaut :
1<i,j<n
séparer la somme en deux
1<i<j<n
renommer (i,j) en (j,i) dans la deuxiéme somme
(indices muets) et regrouper de nouveau les deux
sommes.
b) Par hypothese : (u; —u;)(v; —
2. Faire apparaitre des somme de Riemann en appliquant le

v;) = 0lorsque i < j.

b—a —a
e 1 = - = -
résultat de1b) avec uy f(a+k , )etvk g(a+k - )

puis passer a la limite.



9 | Fixer x € [0, 7] et appliquer la formule de Taylor a reste (15
intégral a sin entre 0 et x a l'ordre 3 puis a l'ordre 5.

Appliquer I'inégalité de Taylor-Lagrange a f : x = In(1 + x)
entre O et 1.
Il s’agit de calculer |f(”+1)| puis d’en trouver un majorant

10

n+1-
—-1)"n!
On trouve f(™1(x) = % donc on peut prendre
Mn+1 =nl

11| @) Appliquer l'inégalité de Taylor-Lagrange

L. . km kw Ckm km .
b) En écrivant: sin— = — (sm—z——z)on obtient
n n n n
Iv-nk | kmy (Ix—mk . kr( . krn kmy 16
Uy, :(— — sm—)+(— — Sm_(sm_z__z))
n n n n n n n n
k=1 k=1
Sy Ry
Dés lors :

* On calcule la limite de S,, en utilisant les sommes de
Riemann de x > xsinx sur [0, 7].

+ On montre que R, — 0 en majorant |R,| avec la ques-| 17

ke . km
— —sin —

tion a) qui permet de majorer 0 0

Réponse : u,, — 1
n—+oo

12! @) Appliquer I'inégalité de Taylor-Lagrange a exp entre 0
et xalordre n=1.
b) En vue d’appliquer la question a), écrire :

1 1 1
e n+k :(en+k —-1- )+(1+
n+k

Ce qui donne :

)
n+k

Uy = (eLk 1 ! )+ Z !
" n+k n+k
k=1 k=1
|
R, Sn
Ensuite : 18
* La question a) permet de majorer |R,| e de montrer que
R, — 0.
n—+oo

* On fait apparaitre une somme de Riemann pour calcu-
ler la limite de S,,.

Réponse : v, — In2
n—+0c0

13! Appliquer la formule de Taylor avec reste intégral a l'ordre
n—1 et minorer le reste intégral avec I’hypothése sur f(".

14| @) Appliquer I'inégalité de Taylor-Lagrange a sin entre 0 et

x a l'ordre n = 2 pour majorer [sinx — x| puis substituer x
—sint.
par —sin
b) En vue d’appliquer la question a), écrire :
1. .1 1. 1.
sm(— sin t) = (sm(— sin t) — —sin t) + (— sin t)
n n n n

Ce qui donne :

T 1 1 T
u, :nj (sin(—sint)——sint)dz#J‘ sintdt
0 n n

19

0
K,
La question a) permet de majorer |K,| et de montrer que
K, — 0.
n—+co
Réponse : u,, —> 2

n—+oo

b) Etudier la fonction @ : h+—

a) Fixer x > 0 et appliquer I'inégalité de Taylor-Lagrange a
l'ordre 1:

* Entre x et x + h pour majorer : )f(x+ h)— f(x) —hf’(x)l

=|A]
* Entre x et x —h pour majorer : |f(x— h)— f(x)+ hf'(x)|

=|B|
Ajouter les deux inégalité obtenues puis utiliser les in-
égalités triangulaires en commencant par
|Al+[B| = |B - Al

h 2

La suite (S,,) est croissante.
En appliquant I'inégalité de Taylor-Lagrange entre a et

M
x €[0,1], montrer que My < k_'k pour tout k € IN.
’ n
Conclure ensuite en utilisant le fait que Z
k=0

1
— —> .
k! n—+oc0

Ecrire u, comme l'intégrale d’'une somme en utilisant
1
1
= | t*dr
2k+1 0
La somme qui apparait se calcule en faisant apparaitre une

somme géométrique. 1
; $2n+2
dt+(-1) dt
0

i

On obtient : u, =

1+12 1412
D
Ky
Il reste :
LS|
e A calculer J dt
0 1+ t-Z

* A montrer que K, — 0 en encadrant I'intérieur.
n—+oo

s
—

Réponse : u
p " sioo 4

1. Ecrire S,, comme l'intégrale d’'une somme en utilisant

x2k+1 X
= | +**dr.
2k+1 0

La somme qui apparait se calcule en faisant apparaitre
une somme géométrique.
X $2n+2
dt+(—1)”j 5 dt.
0 1+t

.
2. On obtient : S, :J
0 1412
~—_——
Ky

Il reste :
X

1
* A calculer J-
o 1+
* A montrer que K, — 0 en encadrant I'intérieur.
n—+oo

dt

2
Réponse : S, — Arctanx
n—+oo

1. Mettre la somme sous forme intégrale en utilisant

1 1
— tﬁ*l‘f’kb dt.
a+kb 0
La somme qui apparait se calcule en faisant apparaitre

une somme géométrique.
On obtient finalement

no_1\k 1 ja-1 1 (n+1)b
1 t t
E =1 :J —b+(—1)”f t“’l—bdt
k:0a+kb 0 1+t 0 1+t
—_—
Ky



Il reste a montrer que K, — 0 en encadrant l'inté-
n—+00

rieur.

1
2. La1. assure que la limite existe et vaut [ = j e
0 +

On calcule I par une D.E.S:

1 1 1 1 -X+2
. D.E.S. == + =
+X3 31+X 3X2-X+1
* On pr1m1t1ve les morceaux, pour le second faire appa-
raitre 4 u
t—-2 1 2t-4 _1 2t-1 3 1
2—t+1 212—t+1 22—t+1 2 t2—-t+1
— —
u’ forme canonique

u

20! Alaide d’'une D.E.S.

Iy 1 1
Sp=2) —————
! 2;%—1 3k+1
La somme n’est pas télescopique.
On peut la mettre sous forme intégrale en remplacant

1 1
1
3k-2 3k
3k_lparjot dt et 3k+1parJ;t dt.

La somme qui apparait se calcule en faisant apparaitre une
somme géométrique.
On obtient finalement, apres simplifications

1Y t+e? 5
| ————=@-"dt
2L 1+t+t2( )

On conclut de fagon usuelle en séparant la partie qui dé-
pend de n:

Sp=

1 t+t? S
S,== ———dt— | ——— xt"dt
2\ )y 1+t+t o 1+t+t
I K,

puis :
e On calcule I a I’aide d’'une D.E.S

* On montre que K,, tend vers 0 en encadrant 'intérieur
1 e

—
n—+oo 2 6\/5

21| La comparaison somme-intégrale, qui s’appuie sur la dé-

Réponse : S,

. 1 o
croissance de t — +a pour écrire

1 <J-k+lldt<1
(k+1)a = Jp 1t 7 ke

permet tous calculs faits de montrer que

n+1)79 -1 nl=a—1
-

1-a

-
n

Réponse : S, ~ T
-a

n

29| 1. On écrit Inn! = Zlnk puis on effectue une comparai-

k=1
son somme-intégrale en partant de
k+1
Ink+1< Intdt <Ink

Tous calculs faits on obtieknt
nlnn-n+1<Inn!<(n+1)In(n+1)-

I1 suffit de montrer que les deux quantités obtenues dans

I'encadrement sont équivalentes a nlnn.

n! ~n"e "\ 2mn
nne—nwlznn(l + 0(1)) puis passer au lo-

2. Traduire I’équivalent :

n =
n—-+o0

garithme.

en:

23| La comparaison somme-intégrale, qui s’appuie sur la dé-

croissance de t 11 sur [2,+oo[ pour écrire

1 k+1 1
— < —dt <
(k+ )in(k + 1) —L fint ' = kInk

permet tous calculs faits de montrer que

2In2

I1 suffit de montrer que les deux quantités obtenues dans
I’encadrement sont équivalentes a In(Inn).

1
In(Inn+1)-In(In2) < ;m <In(lnn)-In(In2)+

24| 1.a) Deux possibilités :

* Procéder par intégration par parties en primitivant
t>lent>t—k+1.
* Appliquer la formule de Taylor a reste intégral a
l'ordre 1 a une primitive F de f sur [k, k+1].
b) Sommer I’égalité du 1a) pour k € [[1, n].

ezalnt

2. Appliquer le résultat de 1b) a la fonction f : t -

n+l n+l
et calculer les intégrales J f et J |f’|
1 1

t

o5| 1.a) Il n'est pas utile de calculer l'intégrale, la décrois-

1 .
sance de t - sur [1,+oo[ permet d’écrire

n
lSJ lclt< L
n o1t n—1

b) Utiliser le théoréme de la limite monotone :

* La positivité des a; donne la croissance de (A,)
* La majoration de a) permet de majorer A,,.

RPN B .
2. En écrivant - ?dt —ag pour k > 2 puis en som-
-1

mant (et en utilisant Chasles), on obtient
H,=Inn+1-A4,

La suite (1 —A,) est convergente, en notant y sa limite,

on obtient le résultat demandé.

Suivre la méthode du . Pour n > 2, considérer

A_J'lntd Zlnk Z(Jk ln_td_lr;{k)

[ —
Ak

26| 1.

Lo Int
* La décroissance de t — sur [e,+c0[ permet
In(k-1) Ink
k-1 k
* L'encadrement précédent permet de montrer que (A,)
est croissante (a partir du rang 3) et majorée, donc

convergente.
ilnk _(Inn)?
k2

k=1
le résultat demandé s’obtient en posant € = lim (-A,).
n—+oo

d’écrire, pour tout k >4:0<4g; <

Sachant que :

2. Séparer les termes d’indices pairs k = 2p et impairs

k=2p+1:
2n n—1
Ink In(2 In(2p+1)
Yy By ey il el)
k=1 p=1 p=0
De méme
S in(2p+1) Zz”lnk " n(2p)
2p+1 k 2p
p=0 k=1 p=1



27

28

Ce qui donne
2n

Ink = In(2p) & Ink

— k _— = — —_

Z( 1) k ZZ 2p Z k
k=1 p=1 k=1

Dans le premier terme du membre de droite, écrire en-
suite In(2p) =1n 2 +1Inp puis séparer la somme et simpli-
fier les termes en commun avec le dernier terme.

3. Avecla question2 :

2n

1 k
Y (1) UL n
k
k=1 k 1 k=n+1
————
Hn SZn_Sn

11 suffit d'utiliser :

=lnn+y+o(1)

(Inn)?
2

* le fait que H,

e lerésultat S, =

- +¢+0(1) (avec n et 2n) .
n—-,+oo

Ce qui précede assure la convergence de la sous-suite
2n

Ink
(3 artnk
k
k=1 o .
voulue. Reste ensuite a montrer que la sous-suite des
termes d’indices impairs converge vers cette méme li-
mite.

) des termes d’indice pairs vers la limite

dn+4

. Utiliser Hyppq = Z 7 pour réexprimer

k=1
3 + 1 N 1
714k+1 4k+2 4k+3 4k+4

Pour cela, séparer Hy, 4 en quatre paquets selon que les
indices soient de la forme 4k +1, 4k +2, 4k+3 ou 4k +4 :

n n n n
1 1 1 1
H, 1=
dntd ;4k+1 +;4k+2+;4k+3+;4k+4

La somme de ’é enonce s’écrit alors :

Sn = Hines = 4Z4k+2 Hanea - sz+1

En séparant de meme les termes d’ md1ces pairs et im-
pairs dans H;, ;1 on obtient finalement :
Sn =Hapsa—2Hpp41 + Hy
Conclure en utilisant H, = Inn+y+o(1)
n—+oo

. Mettre S, sous forme intégrale en remplacant les quatre

. o .1 ,
fractions par des intégrales via = | t*dr.
a+1 0

La somme qui apparait se calcule en faisant apparaitre
une somme géométrique.

On obtient finalement, apres factorisation et simplifica-
tion du facteur commun (1 —1):

1 2
e+ 2t—1 Ay s
Sn:J +—(t*”“"—l)dt
o (1T+1)(1+12)

On conclut de fagon usuelle en séparant la partie qui
dépend de n:

1 2 1 2
-+ 2t-1 tc+2t—1 J
Sn:—J —dt+J- — —  _xtttgy
o (1+8)(1+1t2) o (1+8)(1+12)
1 K,

puis :
* On calcule I a l'aide d’'une D.E.S : on trouve I =0
* On montre que K, tend vers 0 en encadrant l'intérieur

. A n fixé, appliquer le théoreme des valeurs intermé-

diaires strictement monotone a f, : x  x” + x sur |1, 2].

2. Lasuite (x,) est décroissante. Pour cela, calculer f,,(x,)
et montrer :  f,11(x,) 2 0= fo1(xp41)
La suite (x,) converge donc vers ¢ > 1. Montrer que ¢ = 1
en prenant la limite dans la relation x}; + x,, = 3.
3.a) En passant larelation x;+x, = 3 au logarithme puis en
utilisant x, = 140, on obtient : nln(1+0,) =In(2-9,).
Il reste a remplacer chaque membre de ’égalité par
un équivalent.

~ In2 In2(In2-1)
On__'\'—z.
n 2n

: 1 i
En repartant de 'égalité In(1 +9,) = m In(2-9,) et en

b) Il s’agit de montrer que :

1
développant chaque terme jusqu’a la précision 0(—2) :
n

} . (In2)? 1
L 1n(1+bn)=bn—7+o(;)
1 : In2 In2 1
t oo =SE g5l

Reste a égaler les deux expressions ci-dessus.

29| 1. A n fixé, appliquer le TVI strictement monotone a la
. c Tt
fonction f : x > tanx — — sur |nm, nw+ 5[
X

2. Utiliser I'encadrement: nn<x, <nm+ g
Réponse :  x, ~ nm.
3.a) o0,€]-—=, g[ donc 6, = Arctan(tan o).
Remplacer alors tan o, en utilisant o, = x,, — n7 puis

c . o
tanx, = — et enfin Arctanu ~ u combiné avec
X

n u—0
I'équivalent de x, trouvé.

et déve-

b) Repartir de 6, = Arctan i = Arctan

Xy ni+ 9o,

c 1
lopper Arctan a la précision 0(—) :
PP ni + o, P n3

: c
* Sachant que 6, ~ — commencer par montrer que
nrw
c c c? N ( 1 )
— = — —— 7t 0| —= ).
nw+6, nmn (nn)d n3
~—_—
vVl

3

o . 1
 Utiliser ensuite Arctanv, =v, — 57/” +o(v)).

30! 1. Pour n >1 fixé, appliquer le TVI strictement monotone

afixr x?"—2nx+1sur]l,+ool.

2. Pour montrer que P, (1 + L ) > 0, minorer (1 t 1 )2” en
. n 4
ﬁ n

ne gardant que les trois premiers termes dans la formule
du binome.

Comparer ensuite 1 + — et x, (P, est croissante sur

n
[1,+00[) et conclure par encadrement.
3.a) En passant I’égalité x2" = 2nx, — 1 au logarithme on
1nn+ln2+11( 1)
—+—+—In(x,——):
2n  2n  2n " 2n
* Dans le membre de gauche In(1 +¢,,) ~ ¢,

* Dans le membre de droite, '’équivalent est le « plus
gros » des trois termes (montrer que les deux autres

obtient In(1 +¢,) =

sont des O(InTn).

lnn+ln2+11( l)t
— +—+—In(x,——])e
2n  2n  2n " 2n

-

=o(})

b) Repartir de In(1 +¢,) =



développer le membre de gauche jusqu’a la précision « Montrer d’abord que 5, ~ 1 en considérant des équi-
a

1 .
0(;) (faire un DL, de In(1 +¢,,)). valents dans (%)

* Développer ensuite chaque membre de (*) a la préci-
31! 1. A n fixé, I'équation ¢* = x”" équivaut pour x = 1 a

X . c . X
—— =n. Etudier alors les variations de f : x > —.
Inx Inx

2.a) La relation f(x,) = n permet d’écrire x, = g(n) ou ¢
est la réciproque de la fonction fj; o[-
La monotonie et la limite de (x,,) découle des varia-
tions de g qui est décroissante et vérifie lim g(y) =1
y—+00

sion o(%).

(d’apres le théoreme de continuité des fonctions réci-
proques et le TVI strictement monotone)

b) Il s’agit de trouver un équivalent de ¢, = x,, — L.
L'égalité In(x,) = In permet d’écrire In(1 +¢,,) = In,
Remplacer alors chaque membre par un équivalellqlt.

Réponse: ¢, ~—.
n

' 13 1
c) Il s’agit de montrer : én—z+ﬁ+o(;).

En repartant de I'égalité In(1 +¢,) = —(1+¢,) et en dé-

n
1
veloppant chaque membre jusqu’a la précision 0(—2)
n
1 1
e In(l+e¢,)=¢,—-— +O(§)

1 1 1 1
° E(1+€n):;+ﬁ+0(p)

Reste a égaler les deux expressions ci-dessus.

3. a) Utiliser p,, = h(n) ou h est la réciproque de la fonction
fije,+oo] €t Procéder comme en 2a).

Réponse: vy, — +o0
n—+oo

b) Passer 'égalité e¥» =y} au logarithme: 7, =nlny,.
Reste a montrer que Iny, ~Inn.
Pour cela, passer a nouveau au logarithme :
(*) Iny,=Inn+In(Iny,)
et montrer que In(lny,) = 0(1nyn).
c) Repartir de I’égalité y, =nlny, < nlnn+nin(lny,).

Il reste a montrer que In(Iny,) ~ In(nlnn) c’est a dire
que I'équivalent de 3b) In(y,) ~ nlnn « passe au loga-
rithme » (montrer par exemple que le quotient tend
vers 1).

32| 1. A a >0 fixé, appliquer le TVI strictement monotone a

foix e% —x%sur R}.

2. Etant donnés a < 3, il s’agit de comparer x, et x3. Pour
cela calculer fg(x,) et montrer que fz(x,) <0 = fg(xp)
puis utiliser la décroissance de fg.

La décroissance de a  x, et le fait que les x, sont tous

supérieurs a 1 assure l'existence de ¢ = lim x, et ¢ > 1.
a—+o0

Montrer que ¢ = 1 en faisant tendre a vers +co dans
Iégalité e!/¥a = x4,

3. Posant o, = x, — 1 il s’agit de montrer que o, =

a—+00

1 1 1
———+ol—)
a 2a2 ( a ) . 7 o, 7 z .
Commencer par prendre le logarithme de 1'égalité véri-

fiée par x, pour obtenir :

() In(1+06,) = é X !

1+0,

Puis :



