
26
Approximations Exercices
■ Sommes de Riemann

1 SF 10 Etudier les limites des suites de termes généraux :

a) vn =
n∑

k=1

k

n2 + k2 b) wn =
n−1∏
k=0

(
1 +

k

n

)1/n
c) tn =

2n∑
k=n+1

n

k2

2 SF 10 SF 14 Trouver un équivalent de Sn =
n∑

k=1

√
k :

a) En utilisant une somme de Riemann
b) Par comparaison somme-intégrale

3 SF 10 Soit f ∈ C ([0 ,1],R) et g ∈ C 1([0 ,1],R).

Montrer :
1
n

n−1∑
k=0

f
( k
n

)
g
(k + 1

n

)
−→

n→+∞

∫ 1

0
f g

4 Soit r ∈R\{−1,1}. Calculer : I =
∫ π

0
ln(r2−2r cosθ+1)dθ

à l’aide de sommes de Riemann
Indication : Utiliser la factorisation de X2n − 1 dans R[X].

5 SF 10 Soit f : [a ,b]→R continue et strictement positive.
1. Montrer que pour tous n ∈N∗ et k ∈ ⟦0 ,n⟧, il existe un

unique xn,k ∈ [a ,b] tel que :
∫ xn,k

a
f (t)dt =

k

n

∫ b

a
f (t)dt

2. Pour tout n ∈N∗, on pose µn =
1

n+ 1

n∑
k=0

xn,k .

Montrer que : µn −→n→+∞

∫ b

a
tf (t)dt∫ b

a
f (t)dt

.

6 SF 10 a) Etudier la limite de Sn =
1
n

n∑
k=1

k

n
ln

k

n

b) En déduire :
n∑

k=1

k lnk =
n2 lnn

2
− n2

4
+ o(n2).

7 SF 10 Soit f : [a ,b]→R continue et convexe sur [a ,b] (a < b).
En utilisant l’inégalité de Jensen, démontrer que :

1
b − a

∫ b

a
f (x)dx ≥ f

(a+ b

2

)
8 SF 10

1. a) Soient u1, . . . ,un,v1, . . . , vn ∈R. Etablir :

n
n∑

j=1

ujvj −
( n∑
j=1

uj

)( n∑
j=1

vj

)
=

∑
1≤i≤j≤n

(uj −ui)(vj − vi)

b) En déduire que si u1 ≤ · · · ≤ un et v1 ≤ · · · ≤ vn :(1
n

n∑
k=1

uk

)(1
n

n∑
k=1

vk

)
≤ 1

n

n∑
k=1

ukvk

2. Soient f ,g : [a ,b]→R, continues par morceaux et crois-
santes. Montrer que :∫ b

a
f (t)dt

∫ b

a
g(t)dt ≤ (b − a)

∫ b

a
f (t)g(t)dt

■ Formules de Taylor globales

9 SF 12 Montrer : ∀x ∈ [0 ,
π

2
], x− x

3

6
≤ sinx ≤ x− x

3

6
+

x5

120

10 En appliquant une formule de Taylor à f : x 7→ ln(1 + x),

montrer que :
n∑

k=1

(−1)k−1

k
−→

n→+∞
ln2.

11 SF 11 a) Montrer que pour tout x ∈R+ : |sinx − x| ≤
x3

6

b) Etudier la limite de : un =
n∑

k=1

sin
(kπ
n

)
sin

(kπ
n2

)

12 SF 11 a) Montrer : ∀x ∈ [0 ,1], |ex − 1− x| ≤
x2e

2

b) Etudier la limite de : un =
( n∑
k=1

e
1

n+k

)
−n

13 SF 12 Soit f : R+ → R de classe C n (n ∈N∗). On suppose
qu’il existe α > 0 tel que : ∀x ∈R+, f (n)(x) ≥ α.

Montrer :
f (x)
xn−1 −→x→+∞

+∞

14 SF 11 a) Etablir :

∀n ∈N∗,∀t ∈R+,

∣∣∣∣∣sin
(1
n

sin t
)
− 1
n

sin t

∣∣∣∣∣ ≤ 1
6n3

b) Etudier la limite de un = n

∫ π

0
sin

(1
n

sin t
)
dt

15 SF 11 Soit f ∈ C 2(R,R) telle que pour certains M0,M2 ∈R+

∀x ∈R, |f (x)| ≤M0 et
∣∣∣f ′′(x)

∣∣∣ ≤M2

a) Soit x ∈R. Montrer : ∀h > 0, |f ′(x)| ≤
M0

h
+
hM2

2
.

b) En déduire : ∀x ∈R, |f ′(x)| ≤
√

2M0M2.

16 SF 11 Soit f ∈ C∞([0 ,1],R), non nulle. On suppose qu’il
existe a ∈ [0 ,1] tel que pour tout n ∈N : f (n)(a) = 0. Pour

tout n ∈N on pose : Mn = sup
t∈[0 ,1]

∣∣∣f (n)(t)
∣∣∣ et Sn =

n∑
k=0

1
Mk

.

Montrer que (Sn) converge et que lim
n→+∞

Sn ≤
e

M0
.

■ La ruse de l’intégrale de tk

17 SF 13 Etudier la limite de : un =
n∑

k=0

(−1)k

2k + 1

18 SF 13 Soit x ∈ [0 ,1].

1. Pour tout n ∈N on pose Sn =
n∑

k=0

(−1)kx2k+1

2k + 1
.

Montrer : ∀n ∈N, Sn =
∫ x

0

1− (−t2)n+1

1 + t2 dt.

2. En déduire la limite quand n tend vers +∞ de Sn.

19 SF 13

a) Soient a,b ∈N∗, montrer que
n∑

k=0

(−1)k

a+ kb
−→

n→+∞

∫ 1

0

ta−1

1 + tb

b) En déduire :
n∑

k=0

(−1)k

1 + 3k
−→

n→+∞
ln2
3

+
π

3
√

3
.



20 SF 13 Etudier la limite de : Sn =
n∑

k=1

1
9k2 − 1

.

■ Comparaisons somme-intégrale

21 SF 14 Soit α ∈ ]0 ,1[. A l’aide d’une comparaison somme-

intégrale, déterminer un équivalent de Sn =
n∑

k=1

1
kα

.

22 SF 14

1. Par comparaison somme-intégrale, établir : ln(n!) ∼ n lnn

2. A partir de la formule de Stirling, montrer qu’en fait :

ln(n!) =
n→+∞

n lnn−n+
lnn

2
+

ln(2π)
2

+ o(1).

23 SF 14 En effectuant une comparaison somme-intégrale

montrer :
n∑

k=2

1
k lnk

∼ ln(lnn).

24 1. Soit f :R∗+→C de classe C 1.

a) Montrer que pour tout k ∈N∗ :∫ k+1

k
f (t)dt = f (k) +

∫ k+1

k
(k + 1− t)f ′(t)dt

b) En déduire que pour tout n ∈N∗ :∣∣∣∣∣∣∣
n∑

k=1

f (k)

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ n+1

1
f (t)dt

∣∣∣∣∣∣+
∫ n+1

1

∣∣∣f ′(t)∣∣∣dt
2. Soit α > 0. Montrer que la suite

( n∑
k=1

eiα lnk

k

)
n≥1

est bornée

■ Somme harmonique et constante d’Euler

25 SF 15 La constante d’Euler

1. Pour n ≥ 2, on pose : an =
∫ n

n−1

dt
t
− 1
n

et An =
n∑

k=2

ak

a) En encadrant l’intégrale, montrer :

∀k ≥ 2, 0 ≤ ak ≤
1

k − 1
− 1
k

b) Montrer que (An) est convergente.

2. Pour tout n ∈N∗, on pose Hn =
n∑

k=1

1
k

.

Etablir l’existence d’un réel γ tel que :
Hn =

n→+∞
lnn+γ + o(1)

26 SF 15 1. Montrer qu’il existe un réel ℓ tel que :

n∑
k=1

lnk

k
=

n→+∞
(lnn)2

2
+ ℓ + o(1)

2. Montrer que pour tout n ∈N∗ :
2n∑
k=1

(−1)k
lnk

k
= ln2

n∑
k=1

1
k
−

2n∑
k=n+1

lnk

k

3. En déduire :
n∑

k=1

(−1)k
lnk

k
−→

n→+∞
γ ln2− (ln2)2

2

(où γ désigne la constante d’Euler).

27 SF 15 SF 13 Démontrer que
n∑

k=0

1
4k + 1

− 3
4k + 2

+
1

4k + 3
+

1
4k + 4

−→
n→+∞

0

1. En utilisant le développement
n∑

k=1

1
k

=
n→+∞

lnn+γ + o(1).

2. En faisant apparaître une intégrale.

■ Des suites implicites

28 1. Montrer que pour tout n ∈ N∗, l’équation xn + x = 3

possède une unique solution dans ]1 ,2], notée xn.
2. Montrer que (xn) converge et déterminer sa limite.
3. On pose δn = xn − 1 pour tout n ∈ N∗. Montrer que :

a) δn ∼
ln2
n

b) xn = 1 +
ln2
n

+
ln2(ln2− 1)

2n2 +o
( 1
n2

)
29 Soit c ∈R∗+, fixé.

1. Montrer que pour tout n ∈N∗, l’équation x sinx = ccosx

d’inconnue x ∈ ]nπ ,nπ+
π

2
[ possède une unique solution

notée xn.
2. Déterminer un équivalent simple de xn
3. Pour tout n ≥ 1, on pose δn = xn −nπ.

a) Exprimer δn à l’aide de la fonction arctangente pour

tout n ∈N∗ et montrer que : δn ∼
x→+∞

c

nπ
.

b) Etablir enfin : xn =
n→+∞

nπ+
c

nπ
− c2(3 + c)

3n3π3 + o
( 1
n3

)
30 Pour tout n ∈N∗ on pose Pn = X2n − 2nX + 1.

1. Montrer que pour tout n ≥ 1, le polynôme Pn possède
une unique racine sur ]1 ,+∞[, notée xn.

2. Montrer que (xn) converge vers 1. Indication : Avec la for-
mule du binôme montrer que pour n ≥ 2 : Pn(1 + 1√

n
) > 0.

3. On pose, pour tout n ∈N∗ : εn = xn − 1.

a) Etablir : εn ∼
lnn

2n

b) Montrer enfin : xn =
n→+∞

1 +
lnn

2n
+

ln2
2n

+ o
(1
n

)
31 1. Montrer que pour tout n ≥ 3, l’équation ex = xn d’incon-

nue x ∈R∗+ possède exactement deux solutions xn < yn.
2. a) Etudier la monotonie de (xn) et montrer que xn −→n→+∞

1

b) Déterminer un équivalent simple de xn − 1.

c) Etablir enfin : xn =
n→+∞

1 +
1
n

+
3

2n2 + o
( 1
n2

)
.

3. a) Etudier la limite de (yn)
b) Montrer que yn ∼ n lnn.

c) Etablir enfin : yn =
n→+∞

n lnn+n ln(lnn)+o
(
n ln(lnn)

)
32 1. Montrer que pour tout α ∈R∗+, l’équation e

1
x = xα d’in-

connue x ∈R∗+ admet une unique solution xα .
2. Etudier la monotonie de α 7→ xα sur ]0 ,+∞[ et en dé-

duire la valeur de lim
α→+∞

xα

3. Montrer enfin xα =
α→+∞

1 +
1
α
− 1

2α2 + o
( 1
α

)
.

2


