Approximations

Exercices

1 Etudier les limites des suites de termes généraux :
& n
k 1/n
a)””zz—n2+k2 b)wn_l_[(1+ )t—Zk2
= k=n+1
n
2 Trouver un équivalent de S, = Z\/E :
- a) En utilisant une somme de Riemann k=1
b) Par comparaison somme-intégrale
3 SOitfe%[o 1], R) et g€ €'([0,1],R).
- k 1)
+
Montrer : — Zf n_)+oo jfg
T
4 | Soitr € R\{-1,1}. Calculer: I= J In(r?-2rcos0+1)d6
%7 a l'aide de sommes de Riemann 0
Indication : Utiliser la factorisation de X*" —1 dans R[X].
5 Soit f :[a,b] — R continue et strictement positive.
%7 1. Montrer que pour tous n € N* et k € [[0, n]], il existe un
Xk k b
unique x, x € [a,b] tel que: f(t)dt = EJ f(t)dt
a a
. 1
2. Pour tout n € IN*, on pose y, = n_-t-lzx”’k’
b
tf(t)dt
Montrer que : 7 Lbf—
I, f(r)dt
Ik, k
6 a) Etudier la limite de S,, = —Z— In—
T ni=n_n
! n’lnn  n?
b) En déduire : Zk Ink = — +o(n?).
k=1
7 Soit f : [a,b] = R continue et convexe sur [a,b] (a < b).
**.7 En utilisant I'inégalité de Jensen, démontrer que :
1 b a+b
EL flodx= f(—=)
8

I 1. a) Soient ui,.. ,un,vl, ,vne]R Etablir :
()Ll X et

=1 1<1<]<n
b) En déduire que siuy S
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2. Soient f,¢:[a,b] = R, continues par morceaux et crois-
santes. Montrer que :

b b b
[Croa | snar<e-o [ rogma

m Formules de Taylor globales

X3 < < x3+ x>
X—— <sinx < x——+—
6 6 120

SV,

Montrer: VYxe€]|0, %],

—h
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*k
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montrer que : Z 1o In2
k=1
X3
a) Montrer que pour tout x € R, [sinx — x| < i
dier la limite de - kn
b) Etudier la limite de : = Zsm sm o )
x’e
a) Montrer: Vxe[0,1], |ef—1-x|< >

n
b) Etudier la limitede: u,= (Zeﬁ)— n
k=1

Soit f : R, — R de classe ¥" (n € IN*). On suppose

qu'il existe a >0 tel que: VYxeR,, f"(x)>a.

o
X1 x—+o0

a) Etablir:

Montrer :

1
<

VnelN,VteR,, S
n

sin(% sin t) - %sint
T

b) Etudier la limite de u,, = nj

. sin(% sin t)dt

15 Soit f € €*(IR, R) telle que pour certains My, M, € R,
N VxeR, |f(x)I<My et |f(x)] <M,
M hM
a) Soit xeR. Montrer: Yh>0, |f'(x) <=2+ 72
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b) En déduire: VYxeRR,

’ X)l < V2M0M2

Soit f € €=([0,1],R), non nulle. On suppose qu’il
O Pour

et S”_ZMk

t 1 Sp<—
n) converge e que lim Mo

= La ruse de l'intégrale de t*

Etudier la limite de :

existe a €[0,1] tel que pour tout ne N: ()

M, = sup |f(”)
tef0,1]

tout n € IN on pose :

Montrer que (S

Soit x € [0, 1].
n k,2k+1
-1
1. Pour tout n € IN on pose S,, = Z(Z)k—j-l
x_l _(_t2)n+1
Montrer: VYnelN, §S,= j 3 dt.
0 1+t

2. En déduire la limite quand # tend vers +oco de S,,.
n

(_1)k 1 ta—l
a) Soient a,b € N", montrer que ;a kb e J; e

n

(1)K _, In2
1+ 3k n—>+c0 3
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b) En déduire : .
) 3V3
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Etudier la limite de :

Sn = .
2
P 9k 1

m Comparaisons somme-intégrale

Soit a € ]0,1[. A l'aide d’une comparaison somme-
n

intégrale, déterminer un équivalent de S, = Z
k=1

1
k—a.

1. Par comparaison somme-intégrale, établir : In(n!) ~nlnn
2. A partir de la formule de Stirling, montrer qu’en fait :

1 In(2
In(n!) nlnn—n+%+ n(2n)+o(1).

En effectuant une comparaison somme-intégrale

n
L In(Inn).

montrer :
kink
k=2

1. Soit f : R} — C de classe €.

a) Montrer que pour tout k € IN*:

k+1 k+1
f(t)dt:f(k)+f (k+1—t)f'(t)dt
k k

b) En déduire que pour tout n € N*:

n n+1 n+1
;f(k) L f(t)dt+£ IF/(1)

. pialnk
2. Soit a > 0. Montrer que la suite (Z T
k=1

= Somme harmonique et constante d’Euler

La constante d’Euler

<

) est bornée
n>1

Tdr 1
1. Pour n>2,on pose: a, = ——— et A,=) ag
n—-1 t n k=2
a) En encadrant I'intégrale, montrer :
1 1
Vk>2, 0<aqp<—F——
= TEECT %
b) Montrer que (A,) est convergente.
n
. 1
2. Pour tout n € IN*, on pose H, = ;%
Etablir I'existence d'un réel y tel que :
H, njmlnn+7/+0(1)
1. Montrer qu’il existe un réel ¢ tel que :
= Ink (Inn)?
i A
k=1
2. Montrer que pour tout n € IN*:
2n n 2n
Ink 1 Ink
[— k— —_ [R— —
Z( )= =n2 Z k 2
k=1 k=1 k=n+1
n
. Ink (In2)?
4 . _1)k22 _
3. En déduire : Z( 1) PR In2 7

k=1
(ou y désigne la constante d’Euler).

Démontrer que

i L .3 + ! + ! — 0
k_04k+1 4k+2 4k+3 4k +4 no+eo

—+

n
. ) 1
1. En utilisant le développement kE_l T e Inn+y+o(1).

2. En faisant apparafitre une intégrale.

m Des suites implicites

28! 1. Montrer que pour tout n € IN¥, I’équation x”" + x = 3
Fohk

posséde une unique solution dans ]1, 2], notée x,,.
2. Montrer que (x,) converge et déterminer sa limite.
3. On pose 6, = x, — 1 pour tout n € IN*. Montrer que :

. In2 In2(In2-1) 1
b)xn—1+T+T+o(ﬁ)

a) o, ~ -

29| Soit c € IR}, fixé.

%7 1. Montrer que pour tout n € IN¥, I'’équation xsinx = ccosx
d’inconnue x € |nmw, nic+ %[ posséde une unique solution
notée x,,.

2.

3.

Déterminer un équivalent simple de x,,
Pour tout n > 1, on pose 0, = x,, — nr.
a) Exprimer 0, a l'aide de la fonction arctangente pour

5, .
X—+00 NTT
¢ *(3+0)

nm+ —— ——2~
nrt 3ndwd

tout n € IN* et montrer que :

b) Etablir enfin :

Xn

n—+oo

Pour tout n € N* on pose P, = X" —2nX + 1.
1. Montrer que pour tout n > 1, le polyndome P, possede
une unique racine sur ]1,+oo[, notée x,,.

30
Fok

2. Montrer que (x,) converge vers 1. Indication : Avec la for-

mule du bindme montrer que pour n>2: Py(1 + \/LE) > 0.

. On pose, pour tout n € IN*:
Inn
(C_‘n ~ —_—

2n

Ep=x,—1.

a) Etablir:

b) Montrer enfin :

31 1. Montrer que pour tout n > 3, I’équation ¢* = x" d’incon-
Fohk
nue x € R}, possede exactement deux solutions x,, < v,,.
2. a) Etudier la monotonie de (x,,) et montrer que x,, = 1
n—-+oo
b) Déterminer un équivalent simple de x, — 1.
. . 1 3 1
c) Etablir enfin: x, ST - + 5 + O(ﬁ)'
3. a) Etudier la limite de (v,)
b) Montrer que v, ~ nlnn.
c) Etablirenfin: y, = nlnn+nln(lnn)+ o(n In(In n))
n—+oo
1
32| 1. Montrer que pour tout a € R}, I’équation ex = x® d’in-

ok
connue x € R} admet une unique solution x,.

2. Etudier la monotonie de a + x, sur ]0,+oo[ et en dé-
duire la valeur de lim x,
a—+00
. 1 1 1
3. Montrer enfinx, = 1+—-—+ 0(—).
a—+oo a  2a? o



