Il Applications aux sommes doubles

3 Approfondissement : une définition de I’exponentielle
* Objectif. Donner une définition rigoureuse des fonctions sinus et cosinus.

Familles sommables

* Point de départ. On a vu que :
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* Pour tout z € C, la série E — est absolument convergente.
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Définition 1
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Pour tout z€ C, on pose : ¢* = —
déf. n!
=0
* Remarques:
. Pe . 4 4
e Larelation (*) se réecrit: e*** =¢%e®

pour tous z,z" € C.

* La définition de I’exponentielle assure que pour tout z€ C: ¢ = ¢?
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¢ En particulier, pour tout x e R : |e”‘| = el = pi¥emi¥ = 00 = 1,
tz _
Exercice 1 — Soit z € C. Montrer que s
t—
Définition 2
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Pour tout x € R, on pose: cosx = Re(e")= ———— et sinx = Im(e™) = -
déf. 2 éf. 21
* Remarques:
a+b) ia,ib 2

* L'identification des parties réelles et imaginaires dans la formule el
et sin(a+b) =sinacosb + cosasinb.

d’addition : cos(a+b) = cosacosb—sinasinb

= ¢'¢'? établit les formules

e Larelation ¢’ = ¢7™* fournit la parité de la fonction cosinus et I'imparité de la fonction sinus.
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* Sachant que pour toutxeR: " =cosx+isinx, I'égalité: |e’x| =1 s%écrit: cos®x+sin

2x=1.

Exercice 2 — Soit z € C. Montrer que ¢ : t > e'? est dérivable sur R et que ¢’(t) = z¢p(t) pour tout t € R.

Théoreme 1

Les fonctions cos et sin sont dérivables sur R et :

cos’ = —sin

sin” = cos. ]

m Correction des exercices et preuve du théoréeme
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Exercice 1 — Montrons que :

Soit t € IR* :
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ou C est un réel ! indépendant de t.
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Par encadrement : — 0.
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Exercice 2 — Soit t € R.
Pp(t+h)—o@(t)

Montrons que : p }:6 z(t).
Soithe R*:
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Avec le résultat de I'exercice précédent :
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m Démonstration du théoréeme 1
On applique le résultat précédent avec z=1:
la fonction ¢ : t +> e'f est dérivable sur R et pour
toutt e R: ¢'(t)=ie't = —sint+icost.
En conséquence :
* la fonction cos = Re(¢p) est dérivable, de déri-
vée t > —sint
* la fonction sin = Im(¢) est dérivable sur R de
dérivée t > cost.



