
Corps des fractions rationnelles
• Cadre.K =R ou C.

1 Construction du corps K(X) des fractions rationnelles
• Notation. On note E l’ensemble des couples (A,B) de polynômes tels que B , 0 i.e. : E =K[X]×K[X] \ {0}.

• Objectif. Associer à tout couple (A,B) ∈ E un « objet fraction » qui sera noté
A

B
.

Exercice 1 — On définit sur E une relation binaire ∼ en posant, pour tous (A,B), (C,D) ∈ E :
(A,B) ∼ (C,D) ⇐⇒ AD = BC. Montrer que ∼ est une relation d’équivalence sur E.

On noteK(X) l’ensemble des classes d’équivalences de E pour la relation ∼.

Définition 1

• Notation. Pour tout (A,B) ∈ E on note
A

B
la classe d’équivalence de (A,B) :

A

B
=

déf.

{
(C,D) ∈ E | AD = BC

}
• Remarques:

• Par construction : K(X) =
{A
B

; (A,B) ∈ E
}

et pour tous (A,B), (C,D) ∈ E :
A

B
=

C

D
⇔ AD = BC

• Afin de définir l’addition et la multiplication de deux fractions F =
A

B
et G =

C

D
par les formules naturelles

(voir la définition 2 ci-dessous), il convient de vérifier que ces formules ne dépendent pas des couples
(A,B) et (C,D) choisis mais seulement de F et G. C’est l’objet de l’exercice qui suit.

Exercice 2 — Soient (A1,B1), (A2,B2), (C1,D1), (C2,D2) ∈ E tels que :
A1

B1
=
A2

B2
et

C1

D1
=

C2

D2
.

Montrer que :
A1D1 +B1C1

B1D1
=
A2D2 +B2C2

B2D2
et

A1C1

B1D1
=
A2C2

B2D2

Le résultat de l’exercice qui précède permet de définir deux lois de composition internes surK(X) :

Pour tous (A,B), (C,D) ∈ E on pose :
A

B
+
C

D
=

déf.

AD +BC

BD
et

A

B
× C

D
=

déf.

AC

BD
.

Définition 2

(
K(X),+,×

)
est un corps.

Théorème 1

Exercice 3 — Démontrer le théorème.

Exercice 4 — Montrer que ϕ : P 7→ P

1
est un morphisme injectif d’anneaux deK[X] dansK(X).

• Remarque. L’injection précédente permet de « plonger » l’anneau K[X] dans le corps K(X). Précisément
on identifie K[X] avec son image par ϕ en décidant de confondre tout polynôme P ∈ K[X] avec la fraction
P

1
∈K(X). Cette identification fait deK[X] un sous-anneau deK(X).

2 Décomposition en éléments simples sur C

• Cadre. • F=
P

Q
∈C(X) avec P ∧Q = 1 • E est sa partie entière • a1, . . . , ak ses pôles de multiplicités m1, . . . ,mk

• Objectif. Donner une preuve d’existence pour le théorème suivant :

Il existe une unique famille (ai,j ) 1≤i≤k
1≤j≤mi

de complexes telle que : F = E +
k∑

i=1

mi∑
j=1

αi,j

(X − ai)j

Théorème 2

Exercice 5 —

1. On rappelle que : Q = λ
k∏

i=1

(X −ai)mi . Montrer qu’il existe U1, . . .Uk ∈C[X] tels que :
k∑

i=1

QUi

(X − ai)mi
= 1.

2. Pour tout i ∈ ⟦1 , k⟧, on note Ri le reste de la division euclidienne de PUi par (X − ai)mi .

Montrer que : F = E +
k∑

i=1

Ri

(X − ai)mi
.

3. Démontrer l’existence de la famille (ai,j ) 1≤i≤k
1≤j≤mi

du théorème.



Solution de l’exercice 1 — Soient
(A,B), (C,D), (F,G) ∈ E.
• Réflexivité. AB = AB donc : (A,B) ∼ (A,B).
• Symétrie.

Supposons : (A,B) ∼ (C,D) i.e. AD = BC
Alors : CB = DA donc : (C,D) ∼ (A,B).

• Transitivité.
Supposons : (A,B) ∼ (C,D) et (C,D) ∼ (F,G)
c’est à dire : AD = BC et CG = DF
Notons que : ADG = BCG = BDF
Vu que D , 0 et queK[X] est intègre :

AG = BF i.e. (A,B) ∼ (F,G)

Solution de l’exercice 2 —
Par hypothèses : A1B2 = A2B1 et C1D2 = C2D1.
Donc :

(A1D1 +B1C1)B2D2 = A1B2 ×D1D2 +C1D2 ×B1B2

= A2B1 ×D1D2 +C2D1 ×B1B2

= B1D1(A2D2 +B2C2)

et :

A1C1×B2D2 = A1B2×C1D2 = A2B1×C2D1 = B1D1×A2C2

Solution de l’exercice 3 — Montrons que(
K(X),+,×

)
est un corps.

Soient (A,B), (C,D), (F,G) ∈ E.
• Montrons que

(
K(X),+

)
est un groupe commutatif.

• Commutativité de +.
A

B
+
C

D
=
AD +BC

BD
=
CB+DA

DB
=

C

D
+
A

B
• Associativité de +.(A

B
+
C

D

)
+
F

G
=
AD +BC

BD
+
F

G

=
(AD +BC)G+ (BD)F

BD ×G

=
A(DG) +B(CG+DF)

B×DG

=
A

B
+
CG+DF

DG
=
A

B
+
(C
D

+
F

G

)
• Existence d’un élément neutre pour +.

A

B
+

0
1

=
A× 1 +B× 0

B× 1
=
A

B

et :
0
1

+
A

B
=

0×B+ 1×A
1×B

=
A

B

donc
0
1

est neutre pour +.

• Existence d’un « inverse » pour +.
A

B
+
−A
B

=
AB+B× (−A)

B2 =
0
B2 =

0
1

et de même
−A
B

+
A

B
=

0
1

.

• Propriétés de ×. On vérifie de même que × est as-

sociative, possède
1
1

pour élément neutre et est

distributive sur + :
(
K(X),+,×

)
est un anneau.

On vérifie enfin que × est commutative et que si
A

B

est non nulle alors
B

A
est un inverse de

A

B
pour ×

ce qui prouve que
(
K(X),+,×

)
est un corps.

Solution de l’exercice 4 —
• ϕ est un morphisme d’anneaux. Soient P ,Q ∈K[X].

• Par construction ϕ(1) =
1
1

.

• ϕ(P +Q) =
P +Q

1
=
P

1
+
Q

1
= ϕ(P ) +ϕ(Q)

• ϕ(P ×Q) =
P ×Q

1
=
P

1
× Q

1
= ϕ(P )×ϕ(Q)

• ϕ est injective. Soit P ∈K[X].

Supposons que : ϕ(P ) =
0
1

i.e.
P

1
=

0
1

.
Ainsi : P × 1 = 1× 0 i.e. P = 0.

Solution de l’exercice 5 —
1. Les polynômes :

• P1 =
Q

(X − a1)m1
= (X − a2)m2 × · · · × (X − ak)mk

• P2 =
Q

(X − a2)m1
= (X−a1)m2(X−a3)m3. . . (X−ak)mk

. . .

• Pk =
Q

(X − ak)mk
= (X − a1)m1 × · · · × (X − ak−1)mk−1

sont premiers entre eux dans leur ensemble (ils
sont décomposés en facteurs irréductibles) donc
une relation de Bézout entre P1, . . . , Pk s’écrit :

1 =
k∑

i=1

PiUi =
k∑

i=1

QUi

(X − ai)mi

pour certains U1, . . . ,Uk ∈C[X].

2. En multipliant l’égalité de 1. par F =
P

Q
:

F =
k∑

i=1

PUi

(X − ai)mi

Or par définition des Ri , pour tout i ∈ ⟦1 , k⟧, il
existe Qi ∈C[X] tel que : PUi = Qi(X−ai)mi +Ri

donc : F =
k∑

i=1

Qi︸︷︷︸
polynôme

+
k∑

i=1

Ri

(X − ai)mi︸          ︷︷          ︸
de degré

strictement négatif

L’unicité de la décomposition de F comme
somme d’un polynôme et d’une fraction de de-

gré strictement négatif assure que :
k∑

i=1

Qi = E

3. D’après 2. : F = E +
k∑

i=1

Ri

(X − ai)mi
.

Soit i ∈ ⟦1 , k⟧. Par construction Ri ∈ Cmi−1[X]
donc d’après la formule de Taylor pour les poly-

nômes : Ri =
mi−1∑
ℓ=0

R
(ℓ)
i (ai)
ℓ!

(X − ai)ℓ

Ainsi :

Ri

(X − ai)mi
=
mi−1∑
ℓ=0

R
(ℓ)
i (ai)
ℓ!

1
(X − ai)mi−ℓ

=
j=mi−ℓ

mi∑
j=1

R
(mi−j)
i (ai)
(mi − j)!︸       ︷︷       ︸

=ai,j∈C

1
(X − ai)j

=
mi∑
j=1

ai,j

(X − ai)j

et donc : F = E +
k∑

i=1

mi∑
j=1

αi,j

(X − ai)j


