Corps des fractions rationnelles
* Cadre. K=Rou C.

1 Construction du corps K(X) des fractions rationnelles
* Notation. On note E 'ensemble des couples (A, B) de polynémes tels que B=0i.e.: E=K[X]xK[X]\{0}.

* Objectif. Associer a tout couple (A, B) € E un « objet fraction » qui sera noté

STES

Exercice 1 — On définit sur E une relation binaire ~ en posant, pour tous (4, B),(C,D) € E :
(A,B)~(C,D) < AD =BC. Montrer que ~ est une relation d’équivalence sur E.

Définition 1

On note K(X) I'ensemble des classes d’équivalences de E pour la relation ~.

. A .. A
* Notation. Pour tout (A, B) € E on note 3 la classe d’équivalence de (A, B) : B ix {(C,D) €E | AD= BC}
« Remarques: '

A A C
e Par construction : []K(X) = {E' (A,B) e E}] et pour tous (A, B),(C,D) e E : [E =5 © AD = BC]
A C

e Afin de définir I'addition et la multiplication de deux fractions F = 3 et G = D par les formules naturelles

(voir la définition 2 ci-dessous), il convient de vérifier que ces formules ne dépendent pas des couples
(A, B) et (C, D) choisis mais seulement de F et G. C’est 'objet de I'exercice qui suit.
. . A A ¢ C
Exercice 2 — Soient (A}, B}), (A3, B,),(Cy,D;),(C,Ds) € E tels que: =+ =22 et —L==%
By B Dy D,
A1D1+B1C1 _ A2D2+B2C2 ot A1C1 _ A2C2
B\D;  ByD, BiD;  ByD,
Le résultat de 'exercice qui préceéde permet de définir deux lois de composition internes sur K(X) :
Définition 2
Pour tous (4, B),(C,D) € E on pose :
————

]

(IK(X), +, x) est un corps.

Montrer que :

D ADHBCE A e O
D déf. B~ D déf. BD'

.

Exercice 3 — Démontrer le théoreme.
. P
Exercice 4 — Montrer que ¢ : P > T est un morphisme injectif d’anneaux de K[X] dans K(X).

* Remarque. L'injection précédente permet de « plonger » I'anneau K[X] dans le corps K(X). Précisément
on identifie IK[X] avec son image par ¢ en décidant de confondre tout polyndme P € K[X] avec la fraction

p
1€ K(X). Cette identification fait de IK[X] un sous-anneau de K(X).
2 Décomposition en éléments simples sur C

P . . R T
e Cadre.* F=— eC(X)avec PAQ =1 -« E estsa partie entiére ¢ ay,...,a, ses pdles de multiplicités my,...,my

* Objectif. Donner une preuve d’existence pour le théoréme suivant :

Théoréme 2

Il existe une unique famille (a; ;) 1<j<x de complexes telle que: F=E+ ZZL
I Siam; (X —a)
Exercice 5 —
: 4 s = QU
1. Onrappelleque: Q= /\]_[(X_ai)mr_ Montrer qu'il existe Uy, ... Uy € C[X] tels que : ZW =1.
i=1 (A —ai)™

2. Pour tout i € [1,k]], on note R; le reste de la division euclidienne de PU; par (X —a;)"i.

k
R.
Montrer que: F=E+ ) — .

3. Démontrer 'existence de la famille (a; ;) 1<i<k du théoreme.
1<j<m;



Solution de [I'exercice 1 — Soient
(A,B),(C,D),(F,G) € E.
* Réflexivité. AB=AB donc: (A,B)~ (4, B).
* Symétrie.
Supposons:  (A,B)~(C,D) ie. AD=BC
Alors: CB=DA donc: (C,D)~(AB).
o Transitivité.
Supposons: (A,B)~(C,D) et (C,D)~(F,G)
cestadire: AD=BC et CG=DF
Notons que: ADG =BCG =BDF
Vu que D # 0 et que IK[X] est integre :

AG=BF ie. (AB)~(FG)

Solution de I'exercice 2 —

Par hypothéses 5 Ale = AZBl et Cl D2 = Cle.
Donc :

(AlDl ar Blcl)BzDz = Ale X D1D2 ar C1D2 XB1B2
= AZBl X D1D2 iy Cle X Ble
= B1D1(A;D;5 + B,Cy)

Cild:

A1C1 XB2D2 = AlB2XC1D2 = A2B1XC2D1 = BlDl XA2C2

Solution de I'exercice 3 — Montrons que
(]K(X),+,><) est un corps.
Soient (A, B), (C,D), (F,G) € E.
* Montrons que (IK(X),+) est un groupe commutatif.
o Commutativité de +.

A+C AD + BC CB+DA:£+é
B D BD DB D B
e Associativité de +.
A C\ F AD+BC F
(§+5)+5=T+5
_ (AD+BC)G +(BD)F
- BD x G
A(DG)+ B(CG+ DF)
Bx DG

:é+M:f_‘+(E+£)
B DG B \D G
* Existence d’un élément neutre pour +.

A0 A><1+B><O _A
B'1- " Bx1_ B

et: + =

. B~ 1xB B
donc i est neutre pour +.

B x
0 A O><B+1><A A
1

 Existence d'un « inverse » pour +.
A —-A AB+Bx(-A) 0 0

B B B2 B2 1
t de mé -A N A 0
et de méme — + — = —.
os, 2 B B 1
* Propriétés de x. On vérifie de méme que x est as-
. gl ny
sociative, posséde 1 pour élément neutre et est

distributive sur + : (lK(X), +,><) est un anneau.

On vérifie enfin que x est commutative et que si 3

B . A
est non nulle alors n est un inverse de 7 pour X

ce qui prouve que (]K(X), +,><) est un corps.

Solution de I'exercice 4 —
* @ est un morphisme d’anneaux. Soient P, Q € K[X].

¢ Par construction ¢(1) = %
P+ p
¢ pP+Q) =R =2 2 op) ()
PxQ P Q
* pPxQ)=——=7x7T=0(P)xp(Q)
* @ est injective. Soit P € K[X].
0. P
Supposons que:  @(P) = 1% T=7

Ainsi: Px1=1x01i.e. P=0.

Solution de I’exercice 5 —
1. Les polynomes :

* D ZW:(X—az)mzxMx(X—ak)mk
* bh= ﬁ = (X—ay)"(X—a3)"™.. (X —a;)"k
. szﬁz(}(—ﬂl)m1 Xoo X (X = ag_)"

sont premiers entre eux dans leur ensemble (ils
sont décomposés en facteurs irréductibles) donc

une relation de Bézout entre Pj,..., B s’écrit :
k k
QU
1= ZIP, U; = Tl
1
pour certains Uy,..., Uy € (E[X]

2. En multipliant I’égalité de 1. par F = g

k
PU;
F = - e
;’(X_az)m’
Or par définition des R;, pour tout i € [1,k], il
existe Q; € (E[X] tel que: PU; = Q'(X—ai)mi+Ri
k
donc: F= Q; L
Yo Lk
\/—/

polynome de degré
strictement négatif

L'unicité de la décomposition de F comme
somme d’un polynéome et d’une fraction de de-

k
) Qi=E
i=1

gré strictement négatif assure que :

3. D'aprés2.: F = E+Z—)

Soit i € [[1,k]. Par construction R; € C,,,_;[X]
donc d’apres la formule de Taylor pour les poly-

m; lR(F)( )
nomes : R; = Z 7 (X —a;)¢
=0

Ainsi :

— m; | _ i—C
(X —aj) = 0 (X —a;)m
B m; Rfml ])(az) 1 ~ i al]
jemi—tl= (mi—j) (X-a;) L= (X-a;)
= ]_
:a,-,]-GC



