Familles sommables
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Notation. Pour tout a > 1, on pose: ((a)= E T
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@ Pour quelles valeurs de @ € R la somme Z
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Soient z € C et a € R. Les familles ci-dessous
sont-elles sommables?
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Justifier 'existence et calculer Z Z 5
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On note I I'ensemble des entiers naturels non nuls
n‘ayant aucun diviseur premier autre que 2, 3 ou 5.
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Pour tout n €, on pose: a, =
n
Justifier I’existence et calculer : Zan.
nel 1
@ Soit z € C tel que |z| < 1.
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Montrer que : an”‘l =
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Calculer : Z — =20(2).
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@ Soit z € C* tel que |z| < 1.
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Soient a,b € C. Montrer : Z o = Zm oy
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Exercices du cours

Somme des familles d’éléments de [0, +o0]
@ Soit u, une suite de réel positifs.
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On rappelle que : Z
nelN

Zun sila série converge

n=0
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U, = sup

Montrer que : E U, =
nelN

sila série diverge
4) Soit (u;)ier, (v;)ie; des familles de [0, +o0].
En revenant a la définition de la somme montrer que pour

tout Ae R, : Z/\ui:/\Zui

iel iel

E,) Soit (u;)ier, (vi)ier des familles de [0, +o0].
1.a) En utilisant le théoréeme de sommation par paquets
Zui +v; = Zui + ZU,‘
i€l iel iel
b) En déduire que si u; <v; pour toutiel: Zu,- < Zvi
iel iel
2. Alaide du théoréeme de sommation par paquets montrer

Z%(i)
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montrer que :

que pour toute permutation o de I : Zui
i€l

6| Soit (uij)(i’]')e[x] une famille de [0, +o0].
A l'aide du théoréme de sommation par paquets montrer
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que :

Familles sommables de nombres complexes
a Soit (u;);er est une famille sommable de nombres réels.
Montrer que chaque somme Zu:' et Zu; est finie.
iel iel
Ceci légitime la définition Zui & Zuf - Zu{
er.
iel

iel iel

8| Soit (u;)ier et (vi)ie; des familles sommables de nombres
réels. Montrer que (u; +v;);¢; est sommable et que

Z”i +v; Z“i + Zvi(ui)iel

iel iel i€l

(4;);e; une famille sommables de nombres complexes.
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Montrer que :

0] Soit € >0 et (1;);e; une famille sommables de réels. Montrer
qu’il existe une partie finie | de I telle que |Zu,~—Zui’ <e

i€] iel

@3 Soit (1) 7 jjerxj une famille sommable de complexes. Avec

le théoreme de sommation par paquets montrer que la fa-

mille (Z’uij)ie Y ug=Y Y uy

est sommable et :
i [ (i,j)elx] el je]

@:2J Enoncer et démontrer le théoréme relatif au produit de

Cauchy de deux séries.




