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Chapitre 30

Exercices du cours
m Grands classiques

] Soit a € IR. Montrer que la série de Riemann

E — converge si et seulement si a > 1.
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3) Soit (a,),en € RN décroissante positive de limite nulle.
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1. Montrer que la série Z(—l)”an converge.

2. Donner le signe ainsi qu’une majoration de la valeur
absolue des restes de la série Z(—l)”an
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5 Soit g € C.
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Montrer que la série géométrique qu converge si et seule-
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16| Soitv e CN. Montrer que la série Y (v, —v,) converge si
et seulement si la suite (v,) converge.

ment si |g] < 1 et que dans ce cas :
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Soit u € CN. Montrer que si Y u, converge, alors u,

. Soit u une suite positive. Montrer que la série > Uy
converge si et seulement si elle est majorée.

. Soient u,v € RN,
On suppose qu’d partir d'un certain rang, 0 < u, <v,.
1. Montrer que si }_v, converge, alors ) u, converge.

2. Montrer que si ) u, diverge, alors } v, diverge.

@ Soient u,v € RN & termes positifs. On suppose que u, ~ v,,.
Montrer que ) u, et ) v, sont de méme nature.

1) Soient u,v € RN a termes positifs .
On suppose que u, = O(v,) et que Zvn converge.
Montrer que Zun converge.

@:2J Soit u € CN.
Montrer que si Zlunl converge alors Zun converge.




