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• Objectif. L’existence d’une division euclidienne dansK[X] permet d’y faire de l’arithmétique comme dans Z.
L’objectif de ce complément est de recenser rapidement les résultats d’arithmétique dansK[X].

1 PGCD et algorithme d’Euclide
Dans cette partie, A et B sont deux polynômes fixés deK[X] non tous deux nuls.

On appelle un PCGD de A et B tout diviseur commun à A et B de degré maximal.

Définition 1

• Remarque. La définition est légitime car A et B possèdent des diviseurs de degré maximal. En effet, l’ensemble des degrés des polynômes

non nuls divisant A et B est une partie deN non vide (elle possède 0 car les polynômes constants non nuls divisent A et B) et majorée (par

degA si A , 0, degB si B , 0). Cette partie possède ainsi un plus grand élément r et il existe donc des polynômes de degré r divisant A et B.

• Remarque. A et B possèdent une infinité de PGCD. En effet, si P est un PGCD de A et B, alors tous ses
associés i.e. tous les λP avec λ ∈K∗ sont des PGCD de A et B. En revanche un seul PGCD est unitaire.

On définit une suite finie de polynômes (Rk) par récurrence :
• On définit R−1 et R0 par : R−1 = A et R0 = B.
• Pour tout k ∈N, tant que Rk , 0, on définit Rk+1 comme le reste de la division euclidienne de Rk−1 par Rk .

Algorithme d’Euclide

• « Pourquoi ça marche? ». L’algorithme d’Euclide fournit un PGCD de A et B, et ce pour les deux mêmes raisons que dans Z :
i) L’algorithme se termine : Si à l’étape k, Rk , 0, alors degRk+1 < degRk . Ainsi il existe n ∈N tel que Rn , 0 et Rn+1 = 0.
ii) L’algorithme fournit un PGCD : A l’étape n, Rn est un PGCD de A et B ceci pour la même raison que dans Z : les diviseurs communs

sont conservés à chaque étape. A = R−1 et B = R0 ont les mêmes diviseurs communs que R0 et R1, puis que R1 et R2, . . . , et enfin que
Rn et Rn+1 = 0 (et les diviseurs communs de Rn et 0 sont les diviseurs de Rn). Rn est donc un diviseur commun de A et B de degré
maximal i.e. un PGCD de A et B.

• Conséquences de l’algorithme d’Euclide.
1. Tous les PGCD de A et B sont associés à Rn. En effet, si D est un PGCD de A et B, c’est un diviseur commun à A et B donc un diviseur

de Rn : Rn s’écrit Rn = QD pour un certain polynôme Q. De plus D et Rn sont de même degré (le degré maximal des diviseurs
communs), donc degQ = 0 i.e. Q ∈K∗.

2. Puisque tous les PGCD sont associés, un seul est unitaire.

• Il existe un unique PGCD unitaire de A et B, il est noté A∧B.
• Relation de Bézout : il existe U et V ∈K[X] tels que AU +BV = A∧B.
• PGCD et diviseurs communs : les diviseurs communs à A et B sont les diviseurs de A∧B
• Factorisation : Pour tout K ∈K[X] : (AK)∧ (BK) et K(A∧B) sont associés.

Théorème 1

Exemple 1 — 1. Calculer A∧B où A = 6X4 + 8X3 − 7X2 − 5X − 2 et B = 6X3 − 4X2 −X − 1.
2. Trouver une relation de Bézout entre A et B.

En pratique : PGCD et relation de Bézout avec l’algorithme d’Euclide

2 Polynômes premiers entre eux
On considère deux polynômes A,B ∈K[X].

On dit que A et B sont premiers entre eux si A∧B = 1, ou encore si leurs seuls diviseurs communs sont les
polynômes constants non nuls.

Définition 2

Il y a équivalence entre : i) A et B sont premiers entre eux. ii) Il existe U,V ∈K[X] tels que AU +BV = 1.

Théorème 2 : Théorème de Bézout

Soit C ∈K[X]. Si : A | BC et A∧B = 1 alors : A | C.

Théorème 3 : Lemme de Gauss

• Conséquences. Pour tous A1, . . . ,An,B1, . . . ,Bn ∈K[X]
• Si : A∧B1 = 1, . . ., A∧Bn = 1 alors : A∧ (B1 . . .Bn) = 1
• Si A1, . . . ,An divisent C et sont premiers entre eux deux à deux alors leur produit A1 . . .An divise C.

3 Extension du PGCD à un nombre fini de polynômes
Soient A1,A2, . . .An ∈K[X], non tous nuls.
• On définit comme dans Z par récurrence (à partir de l’associativité de ∧) le polynôme A1 ∧A2 ∧ · · · ∧An.

Ce polynôme est appelé le PGCD de A1,A2, . . .An et ses diviseurs sont les diviseurs communs à A1, . . ., An.

• La relation de Bézout demeure valable : il existe U1, . . . ,un ∈K[X] tels que
n∑
i=1

AiUi = A1 ∧A2 ∧ · · · ∧An.

• Lorsque A1 ∧A2 ∧ · · · ∧An = 1, on dit que A1,A2, . . . ,An sont premiers entre eux dans leur ensemble.
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4 PPCM
Dans cette partie, A et B sont deux polynômes fixés deK[X] tous deux non nuls.

On appelle un PPCM de A et B tout multiple non nul commun à A et B de degré minimal.

Définition 3

• Remarque. La définition est légitime car A et B possèdent bien des multiples de degré minimal. En effet, l’ensemble des multiples

communs à A et B possède des polynômes non nuls (AB par exemple). L’ensemble des degrés de ces multiples communs possède donc un

plus petit élément q. Par suite il existe des polynômes de degré q multiples de A et B.

1. Si M est un PPCM de A et B alors les multiples communs à A et B sont les multiples de M
2. PPCM et multiples communs Tous les PPCM de A et B sont associés, un seul est unitaire on le note A∨B
3. Factorisation : Pour tout K ∈K[X] : (AK)∨ (BK) et K(A∨B) sont associés.
4. Lien PGCD-PPCM Les polynômes (A∧B)× (A∨B) et AB sont associés.

Théorème 4

5 Polynômes irréductibles

Un polynôme P non constant est dit irréductible dansK[X] si ses seuls diviseurs sont 1 et P à une constante
multiplicative non nulle près.

Définition 4

Exemple 2 — Tout polynôme de degré 1 est irréductible

En effet, soit P ∈K[X], de degré 1 et A un diviseur de P . Montrons que A est constant ou associé à P .

Par hypothèse il existe B ∈K[X] tel que : P = AB donc : 1 = degP = degA+ degB.

Puisque A,B sont non nuls (car P , 0) on en déduit que A est de degé 0 ou 1 :

• Si degA = 0, alors A est une constante non nulle. • Si degA = 1, alors degB = 0 i.e. B est une constante non nulle λ et A = 1
λ P .

Exemple 3 — Tout polynôme de R[X] de degré 2 à discriminant strictement négatif est irréductible dans R[X]

En effet, soit P ∈R[X] un tel polynôme. Supposons par l’absurde P réductible. Il posséderait alors un diviseur A de degré 1 i.e. de la forme

A = aX + b pour certains a ∈R∗ et b ∈R. Dans ce cas − ba serait racine de A, donc de P ce qui est impossible car P n’a pas de racine réelle.

Soit P ∈K[X] irréductible et soient A,B ∈K[X]. Si P | AB alors : P | A ou P | B.

Théorème 5 : Lemme d’euclide

i) Les polynômes irréductibles de C[X] sont exactement les polynômes de degré 1.
ii) Les polynômes irréductibles de R[X] sont :

• les polynômes de degré 1 • les polynômes de degré 2 à discriminant strictement négatif.

Théorème 6

• Demonstration du théorème.
• Irréductibles de C[X]. On sait déjà que tout polynôme de degré 1 est irréductible. Réciproquement, soit P ∈C[X] irréductible. D’après le

théorème de d’Alembert-Gauss, P possède une racine α ∈C donc X −α divise P . Puisque P est irréductible, P et X −α sont associés donc P
est de degré 1.

• Irréductibles de R[X]. On sait déjà que les polynômes mentionnés par le théorème sont irréductibles sur R[X].
Réciproquement, soit P ∈R[X] irréductible. D’après le théorème de d’Alembert-Gauss, P possède une racine α ∈C :

• Si α ∈R alors X −α ∈R[X] et divise P . Puisque P est irréductible, P et X −α sont associés donc P est de degré 1.
• Si α <R alors α est aussi racine de P donc P est divisible par A = (X −α)(X −α). Puisque P est irréductible, il existe λ ∈R∗ tel que

P = λ(X −α)(X −α) donc les racines de P sont α et α, non réelles : P est donc de degré 2 et à discriminant strictement négatif.

Tout polynôme non nul deK[X] est le produit d’un élément deK∗ et de polynômes unitaires irréductibles
dansK[X] ; l’écriture est unique à l’ordre près des facteurs

Théorème 7

• Demonstration du théorème.
• Preuve dans C[X]. Soit P ∈C[X] non constant. On sait déjà que tout polynôme non constant de C[X] est scindé sur C. Puisque les polynômes

de degré 1 sont irréductibles, ceci assure la partie existence de théorème. Concernant l’unicité, supposons que P est le produit d’un élément
deK∗ et de polynômes unitaires irréductibles dans C[X], d’après le théorème précédent cela signifie que : P = λ(X − a1)m1 . . . (X − ar )mr

pour certains a1, . . . , ar ∈C distincts et m1, . . . ,mr ∈N∗. Par conséquent :
• λ est nécessairement le coefficient dominant de P , donc il est déterminé de façon unique.
• a1, . . . , ar ∈ C sont les racines de P et m1, . . . ,mr ∈N∗ leurs ordres de multiplicités donc les facteurs (X − a1)m1 , . . . (X − ar )mr dont

déterminés de façon unique (à l’ordre près).
• Preuve dans R[X]. Soit P ∈R[X] non constant. En écrivant la factorisation de P dans C[X] et en regroupant les racines non réelles de P par

paires de conjugués on obtient une factorisation de P comme produit d’une constante non nulle et de facteurs de la forme X −λ avec λ ∈R
ou X2 − 2Re(α)X + |α|2 avec α ∈C \R ; tous ces facteurs sont irréductibles (par théorème) et unitaires.
Cette factorisation est en outre unique car, dans le cas contraire, on pourrait former plusieurs factorisations irréductibles de P dans C[X]


