
Chapitre 16
Polynômes Exercices du cours
■ Exemples de base

1 Soit n ∈N. A partir de l’égalité (X+1)2n = (X+1)n(X+1)n,

démontrer l’identité de Vandermonde :
n∑

k=0

(
n

k

)2

=
(
2n
n

)
.

2 Déterminer les éléments inversibles de l’anneauK[X].

3 SF 1 Trouver tous les P ∈K[X] tels que P (X3) = X2P (X).

4 SF 2 Soit n ∈N. Calculer le reste de la division euclidienne
de Xn par : a) X2 − 3X + 2 b) X2 − 4X + 4

5 SF 3 Montrer que P = (X −2)8 + (X −1)7−1 est divisible par
Q = X2 − 3X + 2.

6 SF 3 Montrer que 1 +X +X2 divise X311 +X82 +X15.

7 SF 8 Soit P ∈ R[X]. On suppose que pour tout x ∈ R :

P
(
ex

)
= e2x + ex + 1. Calculer P (−1) et P (j)

8 SF 8 Montrer qu’il n’existe pas de polynôme P ∈ R[X] tel
que pour tout x ∈R : P (x) = sinx.

9 SF 8 Trouver tous les P ∈R[X] vérifiant :

a) ∀n ∈N, P (n) = n2 + 1 b) ∀n ∈N, P (n) = n2 + (−1)n

10 Soit n ∈N∗. Montrer que Xn −1 n’a que des racines simples
dans C.

11 Trouver a,b ∈ R tels que P = X5 + aX2 + bX soit divisible
par (X − 1)2.

12 Montrer que (X2 + 1)2 divise X5 +X4 + 2X3 + 2X2 +X + 1.

13 SF 6 Soit n ≥ 2.

a) Montrer que Xn − 1 =
n−1∏
k=0

(X − e
2ikπ
n )

b) En déduire :
n−1∑
k=0

Xk =
n−1∏
k=1

(X − e
2ikπ
n )

14 SF 5 Résoudre le système


x+ y + z = 0
xy + yz+ xz = −2
xyz = −1

d’inconnue

(x,y,z) ∈C3.

15 Soit n ≥ 2. En considérant le polynôme P = Xn−1, retrouver
la formule donnant la somme des racines n-ièmes de l’unité
et trouver une formule pour le produit.

16 SF 8 Simplifier
n∑
i=1

x
p
i Li pour tout p ∈ ⟦0 ,n− 1⟧

■ Grands classiques

17 SF 8 Soit P ∈K[X] tel que P (X + 1) = P (X). Montrer que P
est constant.

18 Soient x1, . . . ,xn ∈K deux à deux distincts et y1, . . . , yn ∈K
quelconques. Montrer qu’il existe un unique P ∈Kn−1[X]
tel que P (xk) = yk pour tout k ∈ ⟦1 ,n⟧ et que ce polynôme

est donné par : P =
n∑
i=1

yiLi (où L1, . . . ,Ln sont les poly-

nômes de Lagrange associés à x1, . . . ,xn).

19 Démontrer la formule de Taylor polynomiale

20 Soient P ∈ K[X], a ∈ K et m ∈ N∗. Montrer l’équivalence
entre :

i) a est racine de P de multiplicité m

ii) P (a) = P ′(a) = · · · = P (m−1)(a) = 0 et P (m)(a) , 0.

■ Démonstrations

21 Soient P ,Q ∈K[X], non nuls. Montrer que :
1. deg(P +Q) ≤max(degP ,degQ).
2. degPQ = degP + degQ

22 Montrer queK[X] est un anneau intègre

23 Soient A,B ∈K[X]. Etablir :

A | B et B | A ⇐⇒ ∃λ ∈K∗ | A = λB

24 Etablir l’unicité puis l’existence du couple quotient-reste
de la division euclidienne.

25 Soient P ∈K[X] et a ∈K. Montrer que P (a) = 0 si et seule-
ment si (X − a) divise P

26 Soient P ∈K[X] et a1, a2, . . . , ak ∈K, deux à deux distincts
(k ∈N∗). Montrer que si P (a1) = · · · = P (ak) = 0 alors P est
divisible par (X − a1) . . . (X − ak).

27 Soit P ∈K[X], non nul. On pose n = degP . Montrer que P
a au plus n racines dansK.

28 Démontrer la formule de Taylor polynomiale

29 Soient P ∈ K[X], a ∈ K et m ∈ N∗. Montrer l’équivalence
entre :

i) a est racine de P de multiplicité m

ii) P (a) = P ′(a) = · · · = P (m−1)(a) = 0 et P (m)(a) , 0.
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